

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM5PCDEL

Max Marks: 100

Course: Deep Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Elaborate on the learning rules of a single layer perceptron.	CO2	PO1	05
	b)	A single-layer perceptron is trained to classify two classes using the Leaky ReLU activation function with $\alpha = 0.01$. The perceptron receives an input vector $x=[2, -3]^T$ and the weight vector is $w=[0.5, -1.0]^T$, with a bias $b=0.2$. Find: i. The net input z to the activation function. ii. The output of the Leaky ReLU activation function for the given input.	CO1	PO2	10
	c)	Differentiate between Online and Batch learning.	CO3	PO2	05
		OR			
2	a)	Differentiate between a Single-layer Perceptron and a Multi-layer Perceptron.	CO2	PO2	05
	b)	A Multi-layer Perceptron is designed with the following architecture to solve the XOR problem. • Input layer with 2 neurons (x_1, x_2) • Hidden layer with 2 neurons with sigmoid activation function • Output layer with one neuron operating on sigmoid activation function Given the parameters: Input to Hidden layer weights $\mathbf{W}_{\text{hidden}} = \begin{bmatrix} 10 & 10 \\ -10 & -10 \end{bmatrix}, \quad \mathbf{b}_{\text{hidden}} = \begin{bmatrix} -5 \\ 15 \end{bmatrix}$ Hidden to output layer weights $\mathbf{W}_{\text{output}} = \begin{bmatrix} 10 \\ 10 \end{bmatrix}, \quad \mathbf{b}_{\text{output}} = -15$ Determine the output of the network for the input combination: $(x_1, x_2)=(0,0)$. Show all intermediate steps.	CO3	PO4	10
	c)	Write the procedural steps of a Perceptron Convergence algorithm.	CO2	PO1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II																		
3	a)	Given the true probability distribution (P) and the predicted probability distribution (Q) over three outcomes: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <th>Outcome (x)</th><th>P(x)</th><th>Q(x)</th></tr> <tr> <td>1</td><td>0.4</td><td>0.3</td></tr> <tr> <td>2</td><td>0.4</td><td>0.5</td></tr> <tr> <td>3</td><td>0.2</td><td>0.2</td></tr> </table>	Outcome (x)	P(x)	Q(x)	1	0.4	0.3	2	0.4	0.5	3	0.2	0.2		CO3	PO3	08
Outcome (x)	P(x)	Q(x)																
1	0.4	0.3																
2	0.4	0.5																
3	0.2	0.2																
		Determine the associated cross entropy.																
	b)	List and explain any 2 activation functions of a Deep Neural Network (DNN).		CO2	PO1	06												
	c)	Illustrate the functioning of a DNN.		CO2	PO3	06												
		OR																
4	a)	A simple Neural Network is designed with one hidden layer functioning on ReLU (Rectified Linear Unit) activation function and one output layer having Weights of the hidden layer $W = [[0.5, -0.5][-0.2, 0.8]]$ with bias $b = [[0.1][0.2]]$, input vector $x = [[-2][3]]$ and true target label $y = 1$. i. Compute the activations of the hidden layer using the ReLU activation function. ii. Calculate the output from the network if the output layer uses a linear activation. iii. Calculate the Mean Squared Error (MSE) loss.		CO3	PO4	08												
	b)	Elaborate on the Vanishing gradient problem and ways to mitigate it.		CO2	PO1	06												
	c)	Differentiate between Gradient Descent and Nesterov Accelerated Gradient Descent.		CO2	PO2	06												
		UNIT - III																
5	a)	How does early stopping act as regularizer? Explain.		CO2	PO2	10												
	b)	Elaborate the technique of Adaboost optimization.		CO3	PO1	10												
		OR																
6	a)	Are dropouts always helpful during network training? Explain.		CO2	PO2	10												
	b)	Elaborate on the technique of RMSprop optimization.		CO3	PO1	10												
		UNIT - IV																
7	a)	Design a Convolutional Neural Network (CNN) with the following specification to classify a gray scale image with the following specifications. Represent the size of the intermediate feature maps precisely on the architectural design. <ul style="list-style-type: none"> • Input: (64, 64, 1) • Conv1: 16 filters, kernel: 5x5, activation function: ReLU • Pool1: 2x2 Max Pooling • Conv2: 32 filters, kernel: 3x3, activation function: ReLU • Pool2: 2x2 Max Pooling • Flatten • Dense: 64 neurons, activation function: ReLU • Output: 5 neurons, activation function: Softmax 		CO3	PO4	10												
	b)	What are advantages of padding in a CNN? Explain.		CO2	PO2	05												
	c)	Elaborate on backpropagation through convolutions.		CO1	PO1	05												
		OR																

	8	a)	<p>Consider a Convolutional Neural Network (CNN) with the following configuration:</p> <p>An input image of size 4x4:</p> <table border="1"> <tr><td>1</td><td>2</td><td>0</td><td>3</td></tr> <tr><td>4</td><td>5</td><td>1</td><td>0</td></tr> <tr><td>2</td><td>0</td><td>3</td><td>1</td></tr> <tr><td>1</td><td>2</td><td>4</td><td>0</td></tr> </table> <p>A single 2x2 filter (kernel) with weights:</p> <table border="1"> <tr><td>1</td><td>-1</td></tr> <tr><td>0</td><td>1</td></tr> </table> <ol style="list-style-type: none"> Perform convolution operation on the given input image using the specified filter and stride = 1. Write the resulting feature map. Apply ReLU activation function to the result obtained in (i). Represent the updated feature map in the matrix form. Perform max pooling on the feature map obtained from (ii) using 2*2 pooling window and stride = 1. Determine the resulting feature map. 	1	2	0	3	4	5	1	0	2	0	3	1	1	2	4	0	1	-1	0	1	CO3	PO4	10
1	2	0	3																							
4	5	1	0																							
2	0	3	1																							
1	2	4	0																							
1	-1																									
0	1																									
		b)	Elaborate on types of padding.	CO2	PO2	05																				
		c)	Illustrate the concept of convolution as a matrix multiplication.	CO1	PO3	05																				
UNIT - V																										
	9	a)	<p>Compute the values of input gate and output gate of a LSTM cell by considering the given data:</p> $h_{t-1} = \begin{bmatrix} 0.5 \\ 0.1 \end{bmatrix}, x_t = \begin{bmatrix} 0.8 \\ 0.3 \end{bmatrix}$ $W_i = \begin{bmatrix} 0.2 & 0.4 & 0.6 & 0.1 \\ 0.5 & 0.3 & 0.7 & 0.2 \end{bmatrix}, b_i = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$ $W_o = \begin{bmatrix} 0.3 & 0.7 & 0.5 & 0.9 \\ 0.4 & 0.2 & 0.6 & 0.8 \end{bmatrix}, b_o = \begin{bmatrix} 0.05 \\ 0.1 \end{bmatrix}$	CO3	PO4	10																				
		b)	Illustrate the architecture of Gated Recurrent Units (GRU) cell along with block diagram and related mathematical expressions.	CO2	PO2	10																				
OR																										
	10	a)	<p>Compute the values of update gate and the Candidate Hidden State \tilde{h}_t of a GRU cell by considering the given data:</p> <p>Current Input (x_t): $x_t = \begin{bmatrix} 0.6 \\ 0.2 \end{bmatrix}$ Previous Hidden State (h_{t-1}): $h_{t-1} = \begin{bmatrix} 0.3 \\ 0.5 \end{bmatrix}$</p> <p>Update Gate Weights and Bias (W_z, b_z):</p> $W_z = \begin{bmatrix} 0.4 & 0.3 & 0.5 & 0.6 \\ 0.7 & 0.2 & 0.4 & 0.3 \end{bmatrix}, b_z = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$ <p>Candidate Hidden State Weights and Bias (W_h, b_h):</p> $W_h = \begin{bmatrix} 0.6 & 0.2 & 0.8 & 0.4 \\ 0.5 & 0.7 & 0.3 & 0.6 \end{bmatrix}, b_h = \begin{bmatrix} 0.05 \\ 0.1 \end{bmatrix}$	CO3	PO4	10																				

	b)	Illustrate the architecture of Long Short Term Memory (LSTM) cell along with related block diagram and mathematical expressions.	CO2	PO2	10
--	----	--	-----	-----	-----------

B.M.S.C.E. - ODD SEM 2024-25