

B.M.S. College of Engineering, Bengaluru-560019

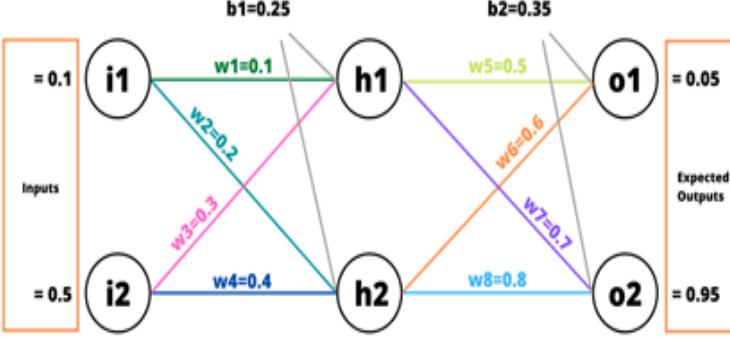
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Artificial Intelligence & Machine Learning


Duration: 3 hrs.

Course Code: 24AM5PCDEL

Max Marks: 100

Course: DEEP LEARNING

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Apply perceptron learning algorithm to train a single layer perceptron for AND Gate with initial weights $w_1 = 1.2$, $w_2 = 0.6$, Threshold = 1 and Learning Rate $n = 0.5$. Refine the model's weights iteratively until convergence.	CO1	PO2	10
	b)	Explain the Various Benefits of Neural Networks. Provide an example.	CO1	PO1	10
OR					
2	a)	Consider the Multilayer Perceptron with sigmoid function as activation function and learning rate = 0.6. Apply backpropagation algorithm and update the weight W_5 and W_6 in backward pass.	CO1	PO2	10
	b)		CO1	PO2	10
		UNIT - II			
3	a)	A neural network is trained using Nesterov Accelerated Gradient Descent (NAG). The learning rate is 0.01, and the momentum coefficient β is =0.9. The velocity at time $t-1$ is $V_{t-1}=0.5$, and the	CO1	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		gradient at time $t-1$ is $\nabla L(w_{t-1}) = -0.3$. Calculate the update for the weights at time step t using the NAG update rule.			
	b)	How does the vanishing gradient problem affect the training of deep neural networks, also describe the strategies that can be employed to mitigate its impact?	CO1	PO2	10
		OR			
4	a)	Illustrate Nesterov accelerated gradient descent with relevant steps and equations.	CO1	PO2	10
	b)	Explain the Momentum based Gradient Descent in detail.	CO1	PO2	10
		UNIT - III			
5	a)	How does Norm Penalties (NP) contribute in improving model performance and reducing overfitting? Explain L1 and L2 NPs.	CO2	PO2	07
	b)	A neural network has 200 parameters, and the L2 norm penalty is applied with a regularization factor $\lambda = 0.1$. The sum of squared weights before training is 15, and after training for 50 epochs, it reduces to 10. Calculate the change in the L2 norm penalty after 50 epochs.	CO2	PO1	07
	c)	Justify the advantages of early stopping in regularizing a model. Explain its working with an algorithm.	CO2	PO2	06
		OR			
6	a)	How Tangent Prop technique can be used to improve the accuracy of classification?	CO2	PO2	08
	b)	Describe the role of Manifold Tangent Classifier in improving the accuracy of classification?	CO2	PO1	06
	c)	Differentiate between Adaboost and RMSProp algorithm.	CO2	PO2	06
		UNIT - IV			
7	a)	Examine Padding from basic Structure of Convolutional Network.	CO2	PO3	08
	b)	How can strides be used to reduce the spatial footprint of the image? Explain.	CO2	PO3	06
	c)	Explain Pooling Operations of Convolutional Network.	CO2	PO1	06
		OR			
8	a)	Consider a CNN architecture with the following specifications: Input image (I): $\begin{bmatrix} 4 & 3 & 2 & 1 & 0 & 6 \\ 7 & 8 & 9 & 2 & 3 & 5 \\ 2 & 3 & 1 & 6 & 5 & 4 \\ 1 & 4 & 7 & 8 & 6 & 2 \\ 5 & 3 & 2 & 1 & 4 & 7 \\ 6 & 8 & 9 & 2 & 3 & 1 \end{bmatrix}$ Filter (F): $\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$	CO2	PO1	08

		<p>i. Perform convolution between I and F using stride 1 and padding 1 to generate the feature map.</p> <p>ii. Apply the ReLU activation function to the feature map.</p> <p>iii. Perform max-pooling on the updated feature map using a pooling size of 2×2 and stride 2.</p> <p>Represent the final matrix after max-pooling.</p>			
	b)	Analyze the Backpropagation as Matrix Multiplications	CO2	PO2	06
	c)	Explain the working of Data Augmentation in CNN.	CO2	PO1	06
UNIT - V					
9	a)	Simplify the basic architecture of a recurrent Neural Networks.	CO3	PO1	10
	b)	Analyze the Challenges of Training Recurrent Neural Networks.	CO3	PO2	10
OR					
10	a)	Analyze the LSTM problems associated with Neural Networks.	CO3	PO2	10
	b)	Simplify the Gated Recurrent Units (GRUs) in Neural Networks.	CO3	PO2	10
