

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 23AM5PCINN

Max Marks: 100

Course: Introduction to Neural Network

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate the process of building invariances and prior information into the design of neural networks.	CO1	PO1	05
	b)	State Least Mean Square (LMS) algorithm. Derive and determine the stability and rate of convergence condition for LMS algorithm.	CO2	PO2	10
	c)	Illustrate the relationship between inner product and Euclidean distance as measures of similarity between patterns.	CO1	PO1	05
OR					
2	a)	Derive the perceptron convergence theorem by illustrating the hyperplane as a decision boundary in the context of a two-class pattern classification problem.	CO2	PO2	10
	b)	With suitable diagram describe any two activation function used in neural networks.	CO1	PO1	04
	c)	Illustrate three architectures of neural network.	CO1	PO1	06
UNIT - II					
3	a)	Describe the heuristics required to significantly improve the performance of the back-propagation algorithm.	CO2	PO1	08
	b)	Illustrate the two fundamental signal flows in a fully connected graph of multilayer perceptron.	CO2	PO1	06
	c)	Outline the role of Hessian in Online Learning.	CO2	PO1	06
OR					
4	a)	Formulate the back-propagation procedure in a multilayer feed forward neural network to determine the local gradients at hidden and output layers.	CO1	PO2	10
	b)	Describe annealing the learning rate in on-line learning and its impact on convergence to the optimal parameter in multilayer perceptron.	CO1	PO2	06
	c)	Differentiate between online and batch learning.	CO1	PO2	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Illustrate complexity regularization and network pruning in designing a multilayer perceptron.	CO3	PO3	08
	b)	i. Explain curse of dimensionality, and its implications in high dimensional data analysis. ii. Describe two strategies to mitigate the challenges posed by the curse of dimensionality.	CO3	PO1	06
	c)	Explain how generalization occurs in a nonlinear hypothetical network to produce correct input–output mapping.	CO2	PO1	06
OR					
6	a)	Illustrate the formulation of supervised learning in multilayer perceptron's as a problem of numerical optimization.	CO3	PO1	08
	b)	Describe the multifold method of cross-validation to improve the performance of a model.	CO3	PO1	06
	c)	Explain replicator mapping in a multilayer perceptron and its use in data compression.	CO2	PO1	06
UNIT - IV					
7	a)	Derive the recursive least squares estimation of the weight vector for radial basis function networks.	CO3	PO3	08
	b)	Design a pattern classifier using an appropriate Radial Basis Function (RBF) network to solve the XOR problem, where the input patterns (1,1) and (0,0) yield an output of '0', and the patterns (0,1) and (1,0) yield an output of '1'.	CO2	PO2	06
	c)	State and derive Cover's theorem on the separability of patterns	CO2	PO2	06
OR					
8	a)	Elaborate the procedure that combines k-means clustering and recursive least square algorithm for training RBF network.	CO3	PO1	10
	b)	Illustrate the interpolation problem by considering network representation that maps from the higher-dimensional input space to single-dimensional output space.	CO3	PO3	06
	c)	Describe the structure of a Radial Basis Function Networks with necessary equations.	CO1	PO1	04
UNIT - V					
9	a)	i. Illustrate the three essential processes involved in the formation of the self-organizing map. ii. Briefly describe how each of these components is implemented using mathematical equations.	CO3	PO3	08
	b)	Illustrate with mathematical equations, relationship between the Kernel Self-Organizing Map (SOM) and the Kullback–Leibler Divergence (KLD)	CO3	PO1	08
	c)	Explain contextual maps and hierarchical vector quantization.	CO1	PO1	04
OR					

	10	a)	Illustrate how Kohonen network be used to compress data with minimum loss of information.	CO3	PO2	08
		b)	Discuss density matching and feature selection properties of SOM algorithm.	CO3	PO1	08
		c)	Differentiate between Kohonen model and Willshaw–von der Malsburg's model.	CO1	PO1	04

REAPPEAR EXAMS 2024-25