

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 23AM5PCINN

Course: Introduction to Neural Networks

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define Neural Network and explain the benefits of neural network.	<i>CO1</i>	<i>PO1</i>	5
	b)	How to Build information and invariances into Neural Network Design? Discuss.	<i>CO1</i>	<i>PO1</i>	5
	c)	Prove the Perceptron convergence theorem for a two-class pattern classification problem.	<i>CO3</i>	<i>PO2</i>	10
OR					
2	a)	Derive and infer the relationship between perceptron models and Bayesian classifiers within the framework of a Gaussian environment.	<i>CO2</i>	<i>PO2</i>	10
	b)	State LMS algorithm. Derive and determine the stability and rate of convergence condition for LMS algorithm.	<i>CO2</i>	<i>PO2</i>	10
UNIT - II					
3	a)	Derive Back-propagation algorithm for Multilayer Feed forward neural network to compute local gradients of hidden and output neurons.	<i>CO1</i>	<i>PO2</i>	10
	b)	Discuss the heuristics required for making the back propagation algorithm to perform better.	<i>CO1</i>	<i>PO1</i>	6
	c)	Illustrate the role of Hessian in Online Learning.	<i>CO2</i>	<i>PO1</i>	4
OR					
4	a)	Describe the concept of annealing the learning rate in on-line learning and its impact on convergence to the optimal parameter in multilayer perceptron.	<i>CO1</i>	<i>PO2</i>	10
	b)	Differentiate batch learning and online learning	<i>CO1</i>	<i>PO1</i>	6
	c)	Demonstrate working of multilayer perceptron for nonlinearly separable pattern.	<i>CO1</i>	<i>PO1</i>	4
UNIT - III					
5	a)	Explain how generalization occurs in a nonlinear hypothetical network to produce correct input-output mapping.	<i>CO2</i>	<i>PO1</i>	6
	b)	Exemplify the different Variants of Cross-Validation technique to improve the performance of a model.	<i>CO3</i>	<i>PO2</i>	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Illustrate the concept of Complexity Regularization and Network Pruning in designing a multilayer perceptron.	CO3	PO1	8
		OR			
6	a)	Explain curse of dimensionality, and its implications in high-dimensional data analysis. Describe two strategies to mitigate the challenges posed by the curse of dimensionality,	CO3	PO1	6
	b)	Describe the perspective of supervised learning as a numerical optimization problem in multilayer perceptron.	CO2	PO1	8
	c)	Illustrate the concept of a replicator (identity) mapping in a multilayer perceptron and its use in data compression	CO3	PO1	6
		UNIT - IV			
7	a)	Analyze the linear separability manifest within a Radial Basis Function (RBF) network with an example to illustrate its practical implications.	CO2	PO2	6
	b)	Illustrate curve-fitting problem and provide the structure of Radial Basis Function Networks.	CO1	PO1	6
	c)	Apply the cover's theorem to improve the effectiveness of the pattern classification task by enhance the separability of patterns in the RBF network.	CO2	PO2	8
		OR			
8	a)	Explain the hybrid learning procedure, along with its key components in training the RBF network.	CO1	PO1	5
	b)	In the XOR problem, there are four patterns -(1, 1), (0, 1), (0, 0), and (1, 0) - in a two-dimensional input space. Construct a pattern classifier that produces the binary output '0' in response to the input pattern (1, 1), or (0, 0) and the binary output '1' in response to the input pattern (0, 1) or (1, 0) using suitable Radial Basis Function (RBF).	CO2	PO3	5
	c)	The size of the hidden layer, in the RBF network is large and computing the inverse matrix $R^{-1}(n)$ for $n = K$ (where K is number of hidden layer) is computationally intensive. Using Recursive Least Square algorithm, provide alternate solution to find $R^{-1}(n)$.	CO2	PO3	10
		UNIT - V			
9	a)	Illustrate how can Kohonen network be used to compress data with minimum loss of information.	CO3	PO2	10
	b)	Describe in detail three essential processes involved in the formation of the self-organizing map with necessary mathematical equations.	CO3	PO1	10
		OR			
10	a)	Discuss density matching and feature selection properties of SOM algorithm.	CO3	PO1	10
	b)	Describe the relationship between the Kernel Self-Organizing Map (SOM) and the Kullback–Leibler Divergence (KLD), with necessary mathematical equations	CO3	PO1	10
