

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM5PCNIC

Max Marks: 100

Course: Nature Inspired Computing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																
1	a)	Elaborate the two main approaches for the simulation and emulation of nature in computers	<i>CO1</i>	<i>PO1</i>	06																
	b)	Illustrate the workflow and outcomes of natural computing with a neat diagram.	<i>CO1</i>	<i>PO1</i>	08																
	c)	with a neat sketch depict and explain the divisions of computing with natural materials.	<i>CO1</i>	<i>PO1</i>	06																
OR																					
2	a)	Elaborate three main branches of natural computing with a neat sketch.	<i>CO1</i>	<i>PO1</i>	06																
	b)	Illustrate the mechanisms of positive and negative feedback function in natural system.	<i>CO1</i>	<i>PO1</i>	06																
	c)	Illustrate the main components of computing inspired by nature branch.	<i>CO1</i>	<i>PO1</i>	08																
UNIT - II																					
3	a)	Illustrate the working of Ant Colony Optimization (ACO) algorithm considering distribution of pheromones. Apply the ACO to find the pheromone deposit on each path for the given graph in figure 3a with the following parameters given in the table.	<i>CO3</i>	<i>PO2</i>	10																
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Parameters</th><th style="text-align: center;">Value</th></tr> </thead> <tbody> <tr> <td style="text-align: center;">Population Size</td><td style="text-align: center;">4</td></tr> <tr> <td style="text-align: center;">Maximum Iteration</td><td style="text-align: center;">1</td></tr> <tr> <td style="text-align: center;">Pheromone evaporation rate</td><td style="text-align: center;">0.05</td></tr> <tr> <td style="text-align: center;">Initial Pheromone</td><td style="text-align: center;">0.5</td></tr> <tr> <td style="text-align: center;">Alpha, Beta</td><td style="text-align: center;">1</td></tr> <tr> <td style="text-align: center;">Q(Constant)</td><td style="text-align: center;">4(for Q/L in in $\Delta\tau$)</td></tr> <tr> <td style="text-align: center;">Random number</td><td style="text-align: center;">0.8 for first iteration</td></tr> </tbody> </table>						Parameters	Value	Population Size	4	Maximum Iteration	1	Pheromone evaporation rate	0.05	Initial Pheromone	0.5	Alpha, Beta	1	Q(Constant)	4(for Q/L in in $\Delta\tau$)	Random number	0.8 for first iteration
Parameters	Value																				
Population Size	4																				
Maximum Iteration	1																				
Pheromone evaporation rate	0.05																				
Initial Pheromone	0.5																				
Alpha, Beta	1																				
Q(Constant)	4(for Q/L in in $\Delta\tau$)																				
Random number	0.8 for first iteration																				

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

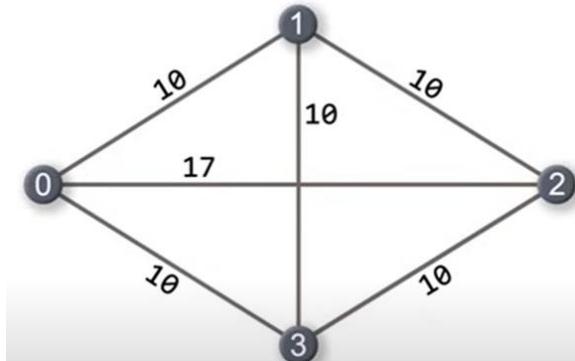


Figure 3a

b) Outline the pseudocode for Employed Bee Phase in Artificial Bee Colony. Analyze the generation of new solution and the factors to consider while evaluating their effectiveness.

OR

4 a) Solve the given particle swarm optimization (PSO) problem to find global best(gbest) and particle's best(pBest) using the following data.

Parameters	Value
Objective function	x^2+1
Number of Particles	3
Initial positions of particles	$x_1 = -2, x_2 = 1, x_3 = -1$
Initial velocity of particles	$v_1 = 0.5, v_2 = -0.3, v_3 = 0.1$
Inertia weight (w)	0.5
Cognitive coefficient(c_1)	1.5
Random values	$r_1 = r_2$ as 0.6 for first iteration $r_1=r_2$ as 0.7 for second iteration

b) Analyze Outlooker Bee phase and Scout phase working in ABC algorithm by considering the factors to choose the food source.

UNIT - III

5 a) Apply Genetic Algorithm to optimize the function $f(x)=x^3$, where the value of x ranges from 0 to 15. Consider the Crossover point as 3 for the given population.

String No.	Initial Population
1	0010
2	0100
3	1001
4	1110

b) Explain five phases of Genetic Algorithm with relevant example.

CO1 PO1 05

c) Illustrate various encoding techniques in Genetic Algorithm.

CO2 PO1 05

OR

	6	a)	<p>Explain Three parent crossover method to generate offspring. Consider the following parent chromosomes to generate offsprings using:</p> <p>P1: <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>15.65</td><td>12.76</td><td>13.47</td></tr></table></p> <p>P2: <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>18.83</td><td>19.41</td><td>16.28</td></tr></table></p> <p>i. Single arithmetic crossover with k(random value)=2 , $\alpha = 0.5$.</p> <p>ii. Linear crossover with K(random value)=2, $\alpha_1=0.5$, $\alpha_2=1.5$, $\alpha_3=-0.5$, $\beta_1=0.5$, $\beta_2=-0.5$, $\beta_3= 1.5$.</p>	15.65	12.76	13.47	18.83	19.41	16.28	CO3	PO1	10
15.65	12.76	13.47										
18.83	19.41	16.28										
		b)	Illustrate five mutation operators for chromosome(string) manipulation in Genetic Algorithm.	CO2	PO1	05						
		c)	In detail explain the stopping condition for Genetic Algorithm.	CO1	PO1	05						
UNIT - IV												
7	a)		Provide Firefly Algorithm. Analyse the movement of firefly based on light intensity and attractiveness function. Include the relevant equations with assumptions and provide an example to demonstrate how the algorithm identifies the optimal solution for a given population.	CO3	PO1	10						
	b)		Analyse the working of Cuckoo Search Algorithm with its three basic principles. Also, elaborate how the cuckoo bird selects a host nest during the process of generating a new solution in optimization with an example.	CO3	PO3	10						
			OR									
8	a)		Provide Social Spider Algorithm (SSA) and explain how information among community is shared through the communal web.	CO1	PO1	10						
	b)		Illustrate Intelligent Water Droplet (IWD) algorithm along with its the key concepts.	CO2	PO1	10						
UNIT - V												
9	a)		<p>Apply Gray Wolf Optimization for the given parameters and find $x(t+1)$, Where t is the iteration, x is position of Gray wolf.</p> <p>Initial Population=12, alpha(α)=2, $x(t)=1$.</p> <p>Coefficient vectors:</p> <p>$A_1=9$, $A_2= 6$ $A_3=3$</p> <p>$C_1=2$, $C_2=4$, $C_3=6$</p> <p>Initial Fitness value:</p> <p>$X_\alpha=5$, $X_\beta=11$ $X_\delta=15$</p>	CO3	PO3	10						
	b)		Analyze the hierarchical structure of a wolf pack and Outline the Gray Wolf Optimization (GWO) algorithm and discuss how the wolf pack hierarchy is simulated within the algorithm to solve optimization problems.	CO2	PO2	10						
			OR									

	10	a)	Provide Dragon fly algorithm and considering population size of 25. Analyse the mathematical model in each step.	<i>CO3</i>	<i>PO2</i>	10
		b)	Provide Whale optimization algorithm and explain Exploration phase during the search for prey.	<i>CO2</i>	<i>PO1</i>	10

B.M.S.C.E. - ODD SEM 2024-25