

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 22AM5PENLP

Max Marks: 100

Course: Natural Language Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Find the probability of the test sentence $P(<\mathbf{s}> \text{ students are from Vellore } </\mathbf{s}>)$ in the following training set using Bi-gram model.</p> <p>Training set:</p> <p><\mathbf{s}> I am from Vellore </\mathbf{s}> <\mathbf{s}> I am a teacher </\mathbf{s}> <\mathbf{s}> students are good and are from various cities </\mathbf{s}> <\mathbf{s}> students from Vellore do engineering </\mathbf{s}>.</p>	Co3	Po3	10
	b)	Summarize the smoothing techniques and evaluation metrics of language models.	Co1	Po1	10
OR					
2	a)	Outline different phases of Natural Language Processing (NLP) with a neat diagram by giving suitable example at each phase.	Co1	Po1	8
	b)	<p>Identify the type of ambiguity and all possible meanings arise from each of the sentences given.</p> <ol style="list-style-type: none"> Time flies like an arrow. Visiting relatives can be boring. Are you still watching? The teacher asked the student to bring his book to class. She observed the painting with a sharp eye. 	Co3	Po3	6
	c)	<p>Given a corpus with the following sentences:</p> <div style="border: 1px solid black; padding: 10px; text-align: center;"> I like NLP I like machine learning Machine learning is fun </div> <ol style="list-style-type: none"> Calculate the bigram probabilities. Given the previous word "like", predict the next word using the bigram probabilities. 	Co3	Po3	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Justify the role of regular expressions in NLP. Provide regular expressions for the following: i. Email address ii. Date in the format DD/MM/YYYY with a year between 1900 and 2099	Co3	Po3	6
	b)	Analyze whether “Campus” is closer to “Counter” by hand computing the minimum edit distance cost using the algorithm.	Co3	Po3	6
	c)	List and explain grammar rules with respect to English helps in constructing phrase structures.	Co1	Po1	8
OR					
4	a)	Once a day (e.g. at noon), the weather is observed as one of states 1: rainy(R) 2: cloudy(C) 3: sunny (S). Answer the following question based on the given state transition diagram: Given that the weather on day 1 ($t = 1$) is sunny (state 3), what is the probability that the weather for the next 7 days will be “sun-sun – rain – rain – sun – cloudy - sun”?	Co3	Po3	6
	b)	Define Hidden Markov Model (HMM). Derive its components with assumptions.	Co2	Po2	8
	c)	List out atleast 5 different Part-of-speech tags in Penn Treebank. Identify part-of- speech to the word “back” in the sentences given below: i. A small building in the back ii. A clear majority of senators back the bill iv. Bob began to back toward the car v. Earnings growth took a back seat	Co3	Po3	6
UNIT - III					
5	a)	Construct the parse tree for the sentences/phrases using the grammar below. $S \rightarrow NP\ VP$... $PP \rightarrow P\ NP$... $NP \rightarrow \text{Det}\ N \mid \text{Det}\ N\ PP \mid T$... $VP \rightarrow V\ NP \mid VP\ PP$	Co3	Po3	5

		<p>... Det -> 'an' 'my'</p> <p>... N -> 'elephant' 'pajamas'</p> <p>... V -> 'shot'</p> <p>... P -> 'in'</p> <p>Check the given sentence “I shot an elephant in my pajamas” is ambiguous. Justify your answer.</p>			
	b)	<p>Explain the following with suitable examples:</p> <ol style="list-style-type: none"> 1. Vectors and documents: term-document matrix 2. Words as vectors: document dimensions 	Co2	Po2	5
	c)	<p>With the help a diagram explain the working of transition based dependency parsing. Show how the word list “[book, me, the, morning, flight]” would be parsed using transition based dependency parsing.</p>	Co3	Po3	10
OR					
6	a)	<p>Parse the below sentences using dependency parsing:</p> <ol style="list-style-type: none"> 1. I saw the queen England’s hat. 2. The angry squirrel stole the mixed nuts from wallmart. 3. The cat eats tasty fish 4. Turn on the office lights. 	Co3	Po3	8
	b)	<p>Apply CYK parsing algorithm on the sentence “The Flight includes a meal” and the grammar for this sentence are as follows: -</p> <p>S-> NP VP, VP-> V NP, NP-> Det N, Det-> a, Det-> The, N->Flight, V -> includes, N -> meal.</p>	Co3	Po3	7
	c)	<p>Explain the following with examples:</p> <ol style="list-style-type: none"> i. TF-IDF ii. Cosine similarity 	Co2	Po2	5
UNIT - IV					
7	a)	<p>With the help of a diagram explain key terms of co reference resolution.</p>	Co2	Po2	7
	b)	<p>Illustrate the following terms with an example</p> <ol style="list-style-type: none"> i. Anaphora ii. Mention iii. Entity linking iv. Structured Polysemy v. Vector embeddings 	Co2	Po2	5
	c)	<p>Infer and explain the steps involved in unsupervised approach to word sense disambiguation.</p>	Co2	Po2	8
OR					
8	a)	<p>Comprehend the architectures for Coreference Algorithms with its applications.</p>	Co2	Po2	10

		b)	Demonstrate the working of Alternate WSD algorithms and Tasks.	Co1	Po1	10
			UNIT - V			
	9	a)	Define machine translation. Illustrate why machine translation is hard?	Co1	Po1	10
		b)	Explain the following: i. Information extraction ii. Automatic text categorization	Co1	Po1	10
			OR			
	10	a)	Elucidate Information Retrieval and Information Extraction with neat diagram	Co1	Po1	10
		b)	Alex wants to automate the process of summarization for the text documents that he has. Analyze the various approaches that he could follow to summarize the text.	Co3	Po3	10
