

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM5PCSL

Max Marks: 100

Course: STATISTICAL MODELING

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks												
1	a)	Define Simple Linear Regression and explain how it models relationships between variables, including a brief example.	<i>CO1</i>	<i>PO1</i>	06												
	b)	Derive the least squares estimates for the parameters of a simple linear regression model.	<i>CO1</i>	<i>PO2</i>	07												
	c)	Explain the steps involved in testing the hypothesis for the significance of slope parameter in a simple linear regression model.	<i>CO2</i>	<i>PO2</i>	07												
OR																	
2	a)	What is the coefficient of determination (R^2)? How is it calculated, and what does it signify in a regression model?	<i>CO1</i>	<i>PO2</i>	06												
	b)	<p>The data regarding sales and advertisement expenditure of a firm is as follows:</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Measure</th> <th>Sales (in crores)</th> <th>Advertisement expenditure (in crores)</th> </tr> </thead> <tbody> <tr> <td>Means</td> <td>40</td> <td>6</td> </tr> <tr> <td>Standard deviations</td> <td>10</td> <td>1.5</td> </tr> <tr> <td>Correlation coefficient</td> <td colspan="2">0.9</td> </tr> </tbody> </table> <p>If the firm targets sales of 60 crores, what should be the required advertisement expenditure? Use linear regression to calculate and explain.</p>	Measure	Sales (in crores)	Advertisement expenditure (in crores)	Means	40	6	Standard deviations	10	1.5	Correlation coefficient	0.9		<i>CO1</i>	<i>PO2</i>	07
Measure	Sales (in crores)	Advertisement expenditure (in crores)															
Means	40	6															
Standard deviations	10	1.5															
Correlation coefficient	0.9																
	c)	Perform ANOVA for a simple linear regression model. Explain the decomposition of the total sum of squares and its relation to the regression and error sum of squares.	<i>CO2</i>	<i>PO2</i>	07												

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		UNIT - II																										
3	a)	List and explain the assumptions of the Multiple Linear Regression model. Why are these assumptions important?			CO1	PO1	06																					
	b)	Derive the least squares estimates for the parameters of a Multiple Linear Regression model and obtain the same for the following:			CO1	PO2	10																					
		<table border="1"> <thead> <tr> <th>Execution Time in milliseconds (y)</th> <th>Number of Elements (X1)</th> <th>Input Complexity (X2)</th> </tr> </thead> <tbody> <tr><td>78.5</td><td>7</td><td>26</td></tr> <tr><td>74.3</td><td>1</td><td>29</td></tr> <tr><td>104.3</td><td>11</td><td>56</td></tr> <tr><td>87.6</td><td>11</td><td>31</td></tr> <tr><td>95.9</td><td>7</td><td>52</td></tr> <tr><td>109.2</td><td>11</td><td>55</td></tr> </tbody> </table>			Execution Time in milliseconds (y)	Number of Elements (X1)	Input Complexity (X2)	78.5	7	26	74.3	1	29	104.3	11	56	87.6	11	31	95.9	7	52	109.2	11	55			
Execution Time in milliseconds (y)	Number of Elements (X1)	Input Complexity (X2)																										
78.5	7	26																										
74.3	1	29																										
104.3	11	56																										
87.6	11	31																										
95.9	7	52																										
109.2	11	55																										
	c)	State Gauss-Markov theorem.			CO1	PO1	04																					
		OR																										
4	a)	What is multicollinearity in a regression model? Explain how the Variance Inflation Factor (VIF) is used to detect multicollinearity. Suggest remedies to address multicollinearity.			CO2	PO2	07																					
	b)	Define heteroscedasticity in regression analysis. How can it be detected using residual plots? Suggest ways to address heteroscedasticity.			CO2	PO2	07																					
	c)	Given the following dataset: <table border="1"> <thead> <tr> <th>Observation</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> </tr> </thead> <tbody> <tr><td>Rainfall (cms)</td><td>30</td><td>23</td><td>34</td><td>31</td><td>17</td><td>36</td></tr> <tr><td>Yield (tons)</td><td>65</td><td>62</td><td>70</td><td>64</td><td>52</td><td>68</td></tr> </tbody> </table> Calculate the Durbin-Watson d statistic to test positive autocorrelation and conclude. ($d_L = 0.61$ and $d_U = 1.40$)			Observation	1	2	3	4	5	6	Rainfall (cms)	30	23	34	31	17	36	Yield (tons)	65	62	70	64	52	68	CO2	PO2	06
Observation	1	2	3	4	5	6																						
Rainfall (cms)	30	23	34	31	17	36																						
Yield (tons)	65	62	70	64	52	68																						
		UNIT - III																										
5	a)	Explain the importance of model diagnostics in regression analysis. How are added variable plots used to diagnose model issues?			CO2	PO1	06																					
	b)	What are Hat Matrix Leverage values? How are they used to identify leverage data points in regression analysis?			CO2	PO2	07																					
	c)	The DFBETAS matrix for a regression model with $n=10$ observations and 2 predictors are given below:			CO1	PO3	07																					

		$\begin{bmatrix} 0.02 & -0.15 \\ -0.08 & 0.10 \\ 0.05 & -0.02 \\ -0.30 & 0.25 \\ 0.12 & -0.05 \\ 0.07 & 0.04 \\ -0.50 & 0.60 \\ 0.20 & -0.10 \\ -0.05 & 0.08 \\ 0.03 & -0.04 \end{bmatrix}$ <p>Compute the threshold for identifying influential observations and determine which data points are influential for each predictor.</p>																												
		OR																												
6	a)	Discuss the use of Studentized Deleted Residuals in identifying outliers. How do they differ from regular residuals?	CO2	PO2	06																									
	b)	Explain model validation criteria such as AIC, BIC, and Mallows' Cp. How are they used in model selection?	CO3	PO1	06																									
	c)	<p>For the given dataset:</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>i</td><td>1</td><td>2</td><td>3</td><td>4</td></tr> <tr><td>y_i</td><td>301</td><td>327</td><td>246</td><td>187</td></tr> <tr><td>x_{i1}</td><td>14</td><td>19</td><td>12</td><td>11</td></tr> <tr><td>x_{i2}</td><td>25</td><td>32</td><td>22</td><td>15</td></tr> <tr><td>h_{ii}</td><td>0.28</td><td>0.33</td><td>0.85</td><td>0.68</td></tr> </table> <p>The fitted regression model and the error mean sum of square are given as $\hat{y} = 80.93 - 5.84X_1 + 11.32X_2$ and $MSE = 574.9$.</p> <p>i. Compute the fitted values and residuals ii. Identify the outliers in Y by computation of studentized residuals</p>	i	1	2	3	4	y_i	301	327	246	187	x_{i1}	14	19	12	11	x_{i2}	25	32	22	15	h_{ii}	0.28	0.33	0.85	0.68	CO3	PO3	08
i	1	2	3	4																										
y_i	301	327	246	187																										
x_{i1}	14	19	12	11																										
x_{i2}	25	32	22	15																										
h_{ii}	0.28	0.33	0.85	0.68																										
		UNIT - IV																												
7	a)	Define a contingency table and explain how it is used in categorical data analysis.	CO1	PO1	06																									
	b)	Explain the concept of an odds ratio. How is it calculated and interpreted?	CO1	PO2	07																									
	c)	Describe the chi-squared test for independence. Provide the formula and explain its application.	CO2	PO1	07																									
		OR																												
8	a)	Explain the logistic regression model and its importance in analyzing categorical data.	CO1	PO2	06																									
	b)	Discuss how sensitivity, specificity, and ROC curves are used to summarize the predictive power of a logistic regression model.	CO3	PO1	07																									
	c)	How are parameters interpreted in logistic regression? Provide an example.	CO3	PO1	07																									

		UNIT - V			
	9	a) Let $\{X_n, n \geq 0\}$ be a discrete time Markov Chain with state space $\{1,2,3,4\}$ and the transition probability matrix A given as: $A = \begin{pmatrix} 0.4 & 0.3 & 0.3 \\ 0.5 & 0.0 & 0.5 \\ 0.1 & 0.2 & 0.7 \end{pmatrix}$ Given the initial probabilities $\pi = (0.25 \quad 0.15 \quad 0.6)$ Compute the following: i. $P(X_2 = 2 X_0 = 1)$ ii. $P(X_3 = 3, X_2 = 2)$ iii. $P(X_2 = 2, X_1 = 1 X_0 = 1)$	CO3	PO2	06
		b) Describe the Forward-Backward algorithm and its applications in Hidden Markov Models.	CO3	PO2	07
		c) Discuss the importance of Gaussian mixture models with Hidden Markov Models and their applications.	CO3	PO2	07
		OR			
	10	a) Given a Hidden Markov Model (HMM) with the following parameters: Transition Probability Matrix (A), Emission Probability matrix (B) and initial probabilities (π) as: $p \quad q \quad 0 \quad 1$ $A = \begin{bmatrix} p & 0.7 & 0.3 \\ q & 0.4 & 0.6 \end{bmatrix}, B = \begin{bmatrix} 0.5 & 0.5 \\ 0.1 & 0.9 \end{bmatrix} \text{ and } \pi = [0.6 \quad 0.4]$ Compute the likelihood probability of the sequence $\{0, 1, 0\}$ using backward probabilities obtained from the backward Algorithm.	CO3	PO2	06
		b) Compare generative and discriminative classifiers. Provide examples where each is preferred.	CO3	PO1	07
		c) Discuss the challenges in choosing the number of hidden states for an HMM and describe how smoothing and filtering techniques are applied.	CO3	PO2	07
