

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM5PCSL

Max Marks: 100

Course: STATISTICAL MODELING

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																				
1	a)	By stating, the simple linear regression model and its assumptions, Obtain the least square estimates of the parameters.	<i>CO1</i>	<i>PO1</i>	08																				
	b)	The relationship between expenditure (\$) and income (\$) is modelled using simple linear regression, with the following regression output, and its output is given below:	<i>CO1</i>	<i>PO2</i>	06																				
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Coefficients:</th><th>Estimate</th><th>Std. Error</th></tr> </thead> <tbody> <tr> <td>Intercept</td><td>31.42</td><td>0.0565</td></tr> <tr> <td>income (\$)</td><td>0.7138</td><td>0.1209</td></tr> </tbody> </table> <p>Obtain the 95% confidence interval for intercept (β_0) and slope (β_1) parameter.</p>	Coefficients:	Estimate	Std. Error	Intercept	31.42	0.0565	income (\$)	0.7138	0.1209														
Coefficients:	Estimate	Std. Error																							
Intercept	31.42	0.0565																							
income (\$)	0.7138	0.1209																							
	c)	Define R^2 and discuss its limitations, especially in the context of comparing models with different numbers of predictors. What advantages does R^2 offer in balancing model efficiency and complexity?	<i>CO1</i>	<i>PO2</i>	06																				
OR																									
2	a)	As part of a waste removal project, a new compression machine for processing sewage sludge is being studied. Engineers are interested in the following variables. y - moisture control of compressed pellets (%) and x -machine filtration rate (kg-DS/m/hr). Engineers collect observations of (x, y) with a random sample of size 10 sewage specimens.	<i>CO1</i>	<i>PO2</i>	08																				
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>125.3</td><td>98.2</td><td>161.2</td><td>178.5</td><td>165.3</td><td>159.5</td><td>145.8</td><td>159.6</td><td>110.7</td></tr> <tr> <td>y</td><td>77.9</td><td>76.8</td><td>80.1</td><td>80.2</td><td>79.0</td><td>79.9</td><td>79.0</td><td>79.0</td><td>78.6</td></tr> </table> <p>Obtain the fitted values of y using simple regression model and also find the value of y, when $x = 180$.</p>	x	125.3	98.2	161.2	178.5	165.3	159.5	145.8	159.6	110.7	y	77.9	76.8	80.1	80.2	79.0	79.9	79.0	79.0	78.6			
x	125.3	98.2	161.2	178.5	165.3	159.5	145.8	159.6	110.7																
y	77.9	76.8	80.1	80.2	79.0	79.9	79.0	79.0	78.6																

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Summarize the test procedure to test the significance of the simple linear regression model.	CO2	PO2	06																					
	c)	Provide a brief overview of the following topics: i) the applications of regression analysis, and ii) how simple regression analysis is used for predicting new observations.	CO1	PO2	06																					
		UNIT - II																								
3	a)	Provide a brief overview of Q-Q plots, including their purpose and how they are used to assess the normality of data.	CO2	PO2	06																					
	b)	Consider the following dataset related to the performance of sorting algorithms:	CO1	PO2	07																					
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Execution Time in milliseconds (y)</th> <th style="text-align: center;">Number of Elements (X1)</th> <th style="text-align: center;">Input Complexity (X2)</th> </tr> </thead> <tbody> <tr><td style="text-align: center;">78.5</td><td style="text-align: center;">7</td><td style="text-align: center;">26</td></tr> <tr><td style="text-align: center;">74.3</td><td style="text-align: center;">1</td><td style="text-align: center;">29</td></tr> <tr><td style="text-align: center;">104.3</td><td style="text-align: center;">11</td><td style="text-align: center;">56</td></tr> <tr><td style="text-align: center;">87.6</td><td style="text-align: center;">11</td><td style="text-align: center;">31</td></tr> <tr><td style="text-align: center;">95.9</td><td style="text-align: center;">7</td><td style="text-align: center;">52</td></tr> <tr><td style="text-align: center;">109.2</td><td style="text-align: center;">11</td><td style="text-align: center;">55</td></tr> </tbody> </table> <p>Provide the least squares estimates for the regression coefficients and summarize the fitted regression model.</p>	Execution Time in milliseconds (y)	Number of Elements (X1)	Input Complexity (X2)	78.5	7	26	74.3	1	29	104.3	11	56	87.6	11	31	95.9	7	52	109.2	11	55			
Execution Time in milliseconds (y)	Number of Elements (X1)	Input Complexity (X2)																								
78.5	7	26																								
74.3	1	29																								
104.3	11	56																								
87.6	11	31																								
95.9	7	52																								
109.2	11	55																								
	c)	When the problem of heteroscedasticity exists in the data? Explain the role of residual graphs to detect the same.	CO2	PO1	07																					
		OR																								
4	a)	Give a brief note on sources and detection of multicollinearity in multiple regression analysis.	CO2	PO1	06																					
	b)	Given the following dataset: <table border="1" style="margin-left: auto; margin-right: auto; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Observation</th> <th style="text-align: center;">1</th> <th style="text-align: center;">2</th> <th style="text-align: center;">3</th> <th style="text-align: center;">4</th> <th style="text-align: center;">5</th> <th style="text-align: center;">6</th> </tr> </thead> <tbody> <tr><td style="text-align: center;">Rainfall (cms)</td><td style="text-align: center;">30</td><td style="text-align: center;">23</td><td style="text-align: center;">34</td><td style="text-align: center;">31</td><td style="text-align: center;">17</td><td style="text-align: center;">36</td></tr> <tr><td style="text-align: center;">Yield (tons)</td><td style="text-align: center;">65</td><td style="text-align: center;">62</td><td style="text-align: center;">70</td><td style="text-align: center;">64</td><td style="text-align: center;">52</td><td style="text-align: center;">68</td></tr> </tbody> </table> <p>Calculate the Durbin-Watson d statistic to test positive autocorrelation and conclude. ($d_L = 0.61$ and $d_U = 1.40$)</p>	Observation	1	2	3	4	5	6	Rainfall (cms)	30	23	34	31	17	36	Yield (tons)	65	62	70	64	52	68	CO2	PO2	06
Observation	1	2	3	4	5	6																				
Rainfall (cms)	30	23	34	31	17	36																				
Yield (tons)	65	62	70	64	52	68																				
	c)	Compare and contrast the regularization techniques of Ridge regression and LASSO regression. What are the key differences in their methodologies and effects on model performance?	CO2	PO2	08																					
		UNIT - III																								
5	a)	“Not all leverage points are outliers” – Justify the statements with an example.	CO1	PO2	06																					
	b)	How the DFFITs and DFBETAs are helpful to identify the influential observations.	CO2	PO1	06																					

		c)	<p>Given the table below with columns for Model No, p (number of parameters including the intercept), R-Squared (R^2), Adjusted R-Squared (Adj R^2), Standard Error (S), and Mallows' Cp:</p> <table border="1"> <thead> <tr> <th>Model</th><th>p</th><th>R^2</th><th>Adj R^2</th><th>S</th><th>Mallows' Cp</th></tr> </thead> <tbody> <tr><td>1</td><td>1</td><td>0.64</td><td>0.62</td><td>0.50</td><td>9.4</td></tr> <tr><td>2</td><td>1</td><td>0.62</td><td>0.60</td><td>0.52</td><td>10.7</td></tr> <tr><td>3</td><td>2</td><td>0.80</td><td>0.77</td><td>0.39</td><td>1.5</td></tr> <tr><td>4</td><td>2</td><td>0.79</td><td>0.76</td><td>0.40</td><td>3.3</td></tr> <tr><td>5</td><td>3</td><td>0.81</td><td>0.76</td><td>0.40</td><td>3.2</td></tr> <tr><td>6</td><td>3</td><td>0.80</td><td>0.76</td><td>0.40</td><td>3.4</td></tr> <tr><td>7</td><td>4</td><td>0.81</td><td>0.74</td><td>0.41</td><td>5.0</td></tr> </tbody> </table> <p>Select the model that best fits the data and justify your answer. Justify why other models are not suitable.</p>	Model	p	R^2	Adj R^2	S	Mallows' Cp	1	1	0.64	0.62	0.50	9.4	2	1	0.62	0.60	0.52	10.7	3	2	0.80	0.77	0.39	1.5	4	2	0.79	0.76	0.40	3.3	5	3	0.81	0.76	0.40	3.2	6	3	0.80	0.76	0.40	3.4	7	4	0.81	0.74	0.41	5.0			08
Model	p	R^2	Adj R^2	S	Mallows' Cp																																																	
1	1	0.64	0.62	0.50	9.4																																																	
2	1	0.62	0.60	0.52	10.7																																																	
3	2	0.80	0.77	0.39	1.5																																																	
4	2	0.79	0.76	0.40	3.3																																																	
5	3	0.81	0.76	0.40	3.2																																																	
6	3	0.80	0.76	0.40	3.4																																																	
7	4	0.81	0.74	0.41	5.0																																																	
			OR																																																			
6	a)		Explain added-variable plots.		CO2	PO1	06																																															
	b)		Describe the Cook's distance to detect the influential observations.		CO2	PO1	06																																															
	c)		Define Mallow's C_p and select the best model for the below given output.		CO2	PO1	08																																															
			<table border="1"> <thead> <tr> <th>Predictor Variables</th><th>P+1</th><th>Mallows' Cp</th></tr> </thead> <tbody> <tr><td>Hours</td><td>2</td><td>45.5</td></tr> <tr><td>Prep exams</td><td>2</td><td>31.4</td></tr> <tr><td>GPA</td><td>2</td><td>29.3</td></tr> <tr><td>Hours, Prep exams</td><td>3</td><td>3.4</td></tr> <tr><td>Hours, GPA</td><td>3</td><td>2.9</td></tr> <tr><td>Prep exams, GPA</td><td>3</td><td>2.7</td></tr> <tr><td>Hours, Prep exams, GPA</td><td>4</td><td>4</td></tr> </tbody> </table>	Predictor Variables	P+1	Mallows' Cp	Hours	2	45.5	Prep exams	2	31.4	GPA	2	29.3	Hours, Prep exams	3	3.4	Hours, GPA	3	2.9	Prep exams, GPA	3	2.7	Hours, Prep exams, GPA	4	4																											
Predictor Variables	P+1	Mallows' Cp																																																				
Hours	2	45.5																																																				
Prep exams	2	31.4																																																				
GPA	2	29.3																																																				
Hours, Prep exams	3	3.4																																																				
Hours, GPA	3	2.9																																																				
Prep exams, GPA	3	2.7																																																				
Hours, Prep exams, GPA	4	4																																																				
			UNIT - IV																																																			
7	a)		<p>Identify the type of categorical scale (nominal or ordinal) used in each of the following scenarios and explain your reasoning:</p> <ol style="list-style-type: none"> Customer satisfaction ratings: "Very Unsatisfied," "Unsatisfied," "Neutral," "Satisfied," "Very Satisfied." Type of pet owned: "Dog," "Cat," "Bird," "Fish," "Other." Highest level of education: "High School," "Associate Degree," "Bachelor's," "Master's," "Doctorate." 		CO1	PO2	06																																															
	b)		Write down the test procedure to test the independence of attributes.		CO2	PO1	06																																															
	c)		<p>Elucidate the following.</p> <ol style="list-style-type: none"> Sensitivity Specificity ROC curve 		CO3	PO1	08																																															
			OR																																																			

	8	a)	<p>In a study of 263 adolescents evaluated for suicidal behaviour, 186 were classified as non-suicidal (NS) at a six-month follow-up. Among them, 86 were assessed as having depression at baseline. Of the 77 adolescents with persistent suicidal behaviour (SB) at follow-up, 45 had been assessed for depression at baseline.</p> <ol style="list-style-type: none"> Construct a contingency table based on this data. Calculate the odds ratio and provide an interpretation. 	CO3	PO2	08											
		b)	<p>The following is the data regarding family condition and examination result of 100 students test whether family conditions and results are independent (critical value is 6.63).</p> <table border="1"> <thead> <tr> <th rowspan="2">Family condition</th> <th colspan="2">Examination results</th> </tr> <tr> <th>Pass</th> <th>Fail</th> </tr> </thead> <tbody> <tr> <td>Good</td> <td>30</td> <td>10</td> </tr> <tr> <td>Bad</td> <td>20</td> <td>40</td> </tr> </tbody> </table>	Family condition	Examination results		Pass	Fail	Good	30	10	Bad	20	40	CO3	PO3	06
Family condition	Examination results																
	Pass	Fail															
Good	30	10															
Bad	20	40															
		c)	<p>Explain how logistic regression is used for binary classification and discuss its advantages. Additionally, mention other machine learning methods that can also be applied for binary classification tasks.</p>	CO1	PO1	06											
			UNIT - V														
	9	a)	<p>Discuss the different types of Markov models and their applications in various fields.</p>	CO3	PO1	06											
		b)	<p>Explain the forward and backward algorithm of hidden Markov models.</p>	CO3	PO1	08											
		c)	<p>Describe the smoothing and filtering techniques of classification using hidden Markov models.</p>	CO3	PO2	06											
			OR														
	10	a)	<p>State the procedure of choosing number of hidden states in hidden Markov models.</p>	CO3	PO2	08											
		b)	<p>Provide pseudocode for the working of Viterbi Algorithm.</p>	CO3	PO2	06											
		c)	<p>Discuss the Gaussian mixture models with hidden Markov models.</p>	CO3	PO2	06											
