

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

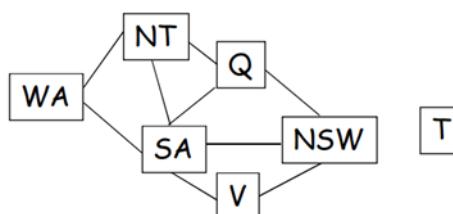
Programme: B.E.

Semester: VI

Branch: Artificial Intelligence And Machine Learning

Duration: 3 hrs.

Course Code: 22AM6PCAAI


Max Marks: 100

Course: Advanced Artificial Intelligence

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Compare two play and multiplayer environment and how are they modeled using a game tree.	CO2	PO2	05
	b)	Differentiate full observable game and stochastic games.	CO2	PO2	05
	c)	Illustrate Heuristic Alpha-Beta Tree Search algorithm and justify why evaluation function is necessary for estimating the expected utility.	CO2	PO2	10
		UNIT - II			
2	a)	Using first order logic, represent the following sentences i. In the array A with 100 integer elements, the first 50 numbers are in increasing order and the last 50 are in decreasing order. ii. not every human is intelligent.	CO2	PO1	05
	b)	Illustrate various mechanism of solving constraint satisfaction problem using search.	CO3	PO1	10
	c)	Demonstrate explanation-based learning with an example.	CO2	PO1	05
		OR			
3	a)	Apply constraint satisfaction problem (CSP) technique for Job-Shop Scheduling of assembling a car.	CO2	PO2	05
	b)	Using Forward checking principle solve the following map coloring problem. Start state for the state WA = Red (R) domain value.	CO2	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Illustrate Inductive Logic programming.	CO3	PO2	05
		UNIT - III			
4	a)	Using STRIPS Algorithm resolve the classical planning problem of block world problem.	CO3	PO2	10
	b)	Apply Planning Domain Definition Language (PDDL) approach for the spare tire problem.	CO3	PO1	10
		OR			
5	a)	Illustrate propositional planning with a suitable example.	CO3	PO2	06
	b)	Illustrate Planning domain definition language (PPDL) description for Air cargo transport.	CO2	PO2	08
	c)	In what way schedules and resources help to solve constraint based problems effectively?	CO3	PO2	06
		UNIT - IV			
6	a)	How do you handle utility functions when multiple attributes involve for decision making by AI agent?	CO2	PO2	05
	b)	Demonstrate value of information with an example	CO2	PO1	07
	c)	Provide solutions using dominance methods for Decision making in the field of public policy which involves high stakes in terms of money and Lives.	CO1	PO2	08
		UNIT - V			
7	a)	Illustrate various early image processing operations performed.	CO2	PO2	10
	b)	Discuss the different types of robotic software architectures.	CO2	PO2	10
