

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence And Machine Learning

Duration: 3 hrs.

Course Code: 22AM6PCAAI

Max Marks: 100

Course: Advanced Artificial Intelligence

Date: 10.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			<i>CO</i>	<i>PO</i>	<i>Marks</i>													
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Compare Partially Observable games and Fully Observable games			<i>CO2</i>	<i>PO2</i>	05													
		b)	Illustrate a horizon affect considering Chess Game. Provide a suitable analysis with an example using Expectimax technique.			<i>CO2</i>	<i>PO2</i>	05													
		c)	Alpha-Beta Pruning technique is much better than Minimax Algorithm. However, it still suffers from finding the best estimate for pruning the tree. Provide a solution for the same.			<i>CO2</i>	<i>PO2</i>	10													
			UNIT - II																		
	2	a)	Apply cryptarithmetic constraint-based problem to solve EAT + EAT + EAT = BEET if T = 0 then what will the value of TEE + TEE?			<i>CO2</i>	<i>PO1</i>	10													
		b)	Detail classical planning and apply the same for block world problem (A B C as individual blocks on a table). Assume and define the start state and reach the goal state as block B to be on block C and then block A.			<i>CO3</i>	<i>PO1</i>	10													
			OR																		
	3	a)	Analyze Map Coloring problem using forward checking technique for the graph shown in 3. (b). The initial state is WA=R.			<i>CO2</i>	<i>PO2</i>	10													
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>WA</td><td>NT</td><td>Q</td><td>NSW</td><td>V</td><td>SA</td><td>T</td></tr> <tr> <td>RGB</td><td>RGB</td><td>RGB</td><td>RGB</td><td>RGB</td><td>RGB</td><td>RGB</td></tr> </table>			WA	NT	Q	NSW	V	SA	T	RGB								
WA	NT	Q	NSW	V	SA	T															
RGB	RGB	RGB	RGB	RGB	RGB	RGB															
		b)	Apply Tree composition techniques to the following graph coloring problem. The initial variable as {WA=blue, NT=green, SA=red}. Show complete sub problems and variables.			<i>CO3</i>	<i>PO1</i>	10													

		<pre> graph TD WA[WA] --- NT[NT] WA[WA] --- SA[SA] NT[NT] --- Q[Q] Q[Q] --- NSW[NSW] SA[SA] --- NSW[NSW] SA[SA] --- V[V] NSW[NSW] --- T[T] V[V] --- T[T] </pre>			
UNIT - III					
4	a)	Illustrate the working principle of STRIPS algorithm and demonstrate with a suitable example.	CO3	PO2	10
	b)	Justify with a suitable example how planning graphs are efficient way to create and solve a planning problem.	CO3	PO2	10
OR					
5	a)	Apply planning problem to solve blocks world problem. The initial state of blocks can be assumed.	CO3	PO1	10
	b)	In what way time, schedules and resources help to achieve classical planning to solve constrain based problems effectively.	CO3	PO1	10
UNIT - IV					
6	a)	Define and formalize Marko decision process. Apply for a 4x3 stochastic grid with +1 and -1 as a terminal states.	CO2	PO1	05
	b)	Compare policy iteration and value iteration.	CO3	PO2	07
	c)	Analyze how Ellsberg paradox is different from Allais Paradox?	CO2	PO2	08
UNIT - V					
7	a)	How edges are detected in an image with Gaussian probability distribution.	CO2	PO1	06
	b)	Illustrate Lambert's cosine law for reflections in diffusion.	CO1	PO2	06
	c)	Illustrate in what way AI robot can achieve perception using localization and mapping?	CO3	PO2	08
