

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 22AM6PCAML

Course: Advanced Machine Learning

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With an equation, discuss how to generate data using the class-conditional probabilities and class priors.	<i>CO2</i>	<i>PO1</i>	04
	b)	Derive the posterior predictive distribution for a single multinomial trial and also discuss how to avoid the zero-count problem using the Dirichlet-multinomial model.	<i>CO3</i>	<i>PO3</i>	08
	c)	Illustrate different types of features used to form the class-conditional density of the Naive Bayes Classifier.	<i>CO3</i>	<i>PO2</i>	08
UNIT - II					
2	a)	Provide the Strategies for preventing overfitting in multivariate Gaussian or Multivariate Normal (MVN).	<i>CO1</i>	<i>PO1</i>	06
	b)	Derive the Inverse Wishart distribution (IW) using multivariate gamma function. Visualization IW with necessary graphs.	<i>CO3</i>	<i>PO3</i>	06
	c)	Derive the class posterior using Linear Discriminant Analysis (LDA) model. Visualize LDA with necessary graphs.	<i>CO3</i>	<i>PO3</i>	08
UNIT - III					
3	a)	With an equation, discuss how to compute posterior using Bayesian model selection.	<i>CO1</i>	<i>PO1</i>	06
	b)	Derive the equation to compute the log marginal likelihood using Bayesian information criterion approximation.	<i>CO3</i>	<i>PO3</i>	08
	c)	Demonstrate how the frequency statistics is based on the sampling distribution with a suitable example.	<i>CO3</i>	<i>PO3</i>	06
UNIT - IV					
4	a)	Verify that the log marginal distribution of the observed data $\ln p(X)$ can be decomposed into two terms in the form $\ln p(X) = L(q) + KL(q p)$ where $L(q)$ and $KL(q p)$ is given.	<i>CO2</i>	<i>PO2</i>	06
	b)	Illustrate the Expectation Propagation algorithm using a simple example of clutter problem to infer the mean θ of a multivariate	<i>CO3</i>	<i>PO3</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		Gaussian distribution over a variable x (set of observations) drawn from the distribution with necessary graph and equations.			
	c)	Discuss the concept of Markov chain Monte Carlo (MCMC) considering sampling from a large class of distributions.	COI	POI	06
		OR			
5	a)	Demonstrate how the Expectation Propagation and Variational message passing correspond to the optimization of two different KL divergences.	CO3	PO3	06
	b)	Explain Gibbs Sampling and Illustrate by alternate updates of two variables whose distribution is a correlated Gaussian.	CO2	PO2	06
	c)	Discuss the Box-Muller method for generating Gaussian distributed random numbers starts by generating samples from a uniform distribution.	COI	POI	08
		UNIT - V			
6	a)	Explain the concept of kernel trick.	COI	POI	06
	b)	Derive Mercer kernel using gram matrix with a suitable example.	CO3	PO3	08
	c)	Discuss the Application: Google's PageRank algorithm for web page ranking using Markov models.	CO3	PO2	06
		OR			
7	a)	Examine the Kernels for comparing documents using the bag of words.	COI	POI	06
	b)	Describe how to recursively compute the filtered marginal in a Hidden Markov Model using the forwards algorithm.	CO2	POI	08
	c)	Discuss the types of inference problems for temporal models.	COI	POI	06
