

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 22AM6PCAML

Max Marks: 100

Course: Advanced Machine Learning

Date: 05.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the equations for posterior and posterior predictive distribution using beta-binomial model.	CO3	PO2	10
	b)	How Naïve Bayes Classifier can be used for the prediction of conditionally independent class labels.	CO2	PO2	10
UNIT - II					
2	a)	How Linear Discriminant Analysis can be applied for a special case in which the covariance matrices are tied or shared across classes. Analyze various strategies for preventing the over fitting of the data.	CO2	PO2	10
	b)	Apply linear Gaussian model for Inferring an unknown scalar from noisy measurements.	CO2	PO2	10
UNIT - III					
3	a)	Define the model selection problem, how marginal likelihood can be computed using parameter inference for a fixed mode?	CO2	PO2	10
	b)	What is Bayes' risk? Prove that a Bayes estimator can be obtained by minimizing the posterior expected loss for each x .	CO3	PO3	10
UNIT - IV					
4	a)	Develop a variational framework to maximize a lower bound on the marginal likelihood.	CO3	PO3	10
	b)	Apply an alternative form of deterministic approximate inference based on the reverse KL divergence.	CO2	PO3	10
OR					
5	a)	Illustrate Gibbs sampling algorithm for the suitable data.	CO3	PO3	10
	b)	Explain Hybrid Monte Carlo Algorithm with necessary equations.	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - V						
6	a)	How SVM can be applied in regression task.	<i>CO2</i>	<i>PO2</i>	10	
	b)	Discuss the different methods for classification and regression based on kernels.	<i>CO1</i>	<i>PO1</i>	10	
OR						
7	a)	Explain different kinds of inference in hidden Markov models.	<i>CO1</i>	<i>PO1</i>	10	
	b)	Analyze Google's PageRank algorithm for web page ranking using a Markov model.	<i>CO3</i>	<i>PO3</i>	10	

B.M.S.C.E. - EVEN SEM 2022-23