

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 22AM6PCDEL

Max Marks: 100

Course: Deep Learning

Date: 12.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Solve the XOR problem through feed forward network. Detail the solutions with necessary equation.		CO3	PO3	10
	b)	What is the significance of Early Stopping? Rewrite the early stopping meta-algorithm for determining the best amount of time to train.		CO2	PO2	10
OR						
2	a)	Elaborate on how the choice of cost function is an important aspect of designing a Deep Neural Network.		CO2	PO2	10
	b)	Explain the strategy of combining several models to reduce generalization error.		CO2	PO2	10
			UNIT - II			
3	a)	Compute the gradient in Recurrent Neural Network (RNN) and detail the process with supportive mathematical derivatives.		CO1	PO4	10
	b)	Explain how Bidirectional RNNs help in prediction of output that depends on whole of the input.		CO2	PO2	10
			UNIT - III			
4	a)	Elaborate on the different layers of a Convolutional Neural Network (CNN) with necessary diagram and derivatives.		CO2	PO2	10
	b)	List and explain the different data channels that could be used in a CNN.		CO2	PO2	5

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		c)	What is the importance of pre-trained models in CNN? Do they enhance the model performance? Explain.	CO2	PO2	5
			UNIT - IV			
5	a)		As a solution to a Machine Learning application, the Engineer uses an unsupervised Neural Network that tries to reconstruct the output layer as similar as the input layer. Recognize the learning technique used here and detail its working principle.	CO1	PO4	10
	b)		When do you prefer using Transfer learning & why?	CO2	PO2	5
	c)		Briefly explain the Generative Adversarial Networks and list their real time applications.	CO2	PO2	5
			UNIT - V			
6	a)		Deduce the Variational Stochastic Maximum Likelihood Algorithm for training a Deep Boltzmann Machine (DBM) with two hidden layers.	CO3	PO3	10
	b)		Elaborate on the different types of Auto Regressive Networks.	CO3	PO3	10
			OR			
7	a)		Illustrate the Discrete Stochastic operations through which you can realize Back-Propagation.	CO2	PO2	10
	b)		Give inferences to the fact that DBM Parameter Learning is an interesting property of DBM.	CO2	PO2	10
