

U.S.N.									
--------	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM6PCDEL

Max Marks: 100

Course: Deep Learning

Instructions: 1. Answer any FIVE full questions, choice in UNIT III and UNIT IV only.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
			1	a)	i) Illustrate how vanishing gradient can pose problem to the Deep Learning model. ii) Explain how to mitigate it.			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.				b)	How properties of ReLU can act as heuristics in avoiding local minima in Deep Neural Networks (DNN)?	CO1	PO1	06
				c)	Differentiate between stochastic gradient descent with momentum and Nesterov accelerated stochastic gradient descent.	CO1	PO1	08
	UNIT - II							
	2	a)	A neural network is trained for classification task. It is observed that the training loss continues to decrease, but the validation loss starts to increase after a certain number of epochs. Write				CO1	PO1
			i. A meta-algorithm for incorporating early stopping. ii. An algorithm to determine training period.					08
		b)	Outline the significance of gradient clipping.				CO1	PO1
		c)	Compare RMSProp and RMSProp with Nesterov momentum.				CO1	PO1
	UNIT - III							
	3	a)	Compute the values of reset gate and the new hidden State h_t of a Gated Recurrent Unit (GRU) cell by considering the given data				CO3	PO3
			Weights for the reset gate $W_r = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 \\ 0.5 & 0.6 & 0.7 & 0.8 \end{bmatrix}$		Biases for the reset gate $b_r = [0.2, 0.1]$ Input vector $x_t = [0.5, -0.2]$			08
			Previous hidden state $h_{t-1} = [0.1, 0.4]$					
			Candidate hidden state $\tilde{h}_t \approx \begin{bmatrix} 0.2246 \\ 0.5208 \end{bmatrix}$		Update Gate $z_t \approx \begin{bmatrix} 0.5646 \\ 0.6630 \end{bmatrix}$			

	b)	Analyse the role of the encoder and decoder in sequence-to-sequence RNN architecture. How are these components structured?	CO2	PO2	08							
	c)	Illustrate the architecture and working of Multilayer Recurrent Networks.	CO2	PO2	04							
		OR										
4	a)	Compute the values of input gate and output gate of a LSTM cell by considering the given data	CO3	PO3	08							
		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">Weights for the input gate $W_i = \begin{bmatrix} 0.5 & 0.4 \\ 0.3 & 0.2 \end{bmatrix}$</td><td style="width: 50%;">Recurrent weights for the input gate $U_i = \begin{bmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{bmatrix}$</td></tr> <tr> <td>Hidden state $h_{t-1} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$</td><td>Biases for the input gate $b_i = [0.2, 0.1]$</td></tr> <tr> <td>Input vector $x_t = \begin{bmatrix} 0.5 \\ 0.6 \end{bmatrix}$</td><td>Weights for the output gate $W_o = \begin{bmatrix} 0.7 & 0.6 \\ 0.5 & 0.4 \end{bmatrix}$</td></tr> <tr> <td>Recurrent weights for the output gate $U_o = \begin{bmatrix} 0.3 & 0.4 \\ 0.5 & 0.6 \end{bmatrix}$</td><td>Biases for the output gate $b_o = [0.2, 0.1]$</td></tr> </table>	Weights for the input gate $W_i = \begin{bmatrix} 0.5 & 0.4 \\ 0.3 & 0.2 \end{bmatrix}$	Recurrent weights for the input gate $U_i = \begin{bmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{bmatrix}$	Hidden state $h_{t-1} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$	Biases for the input gate $b_i = [0.2, 0.1]$	Input vector $x_t = \begin{bmatrix} 0.5 \\ 0.6 \end{bmatrix}$	Weights for the output gate $W_o = \begin{bmatrix} 0.7 & 0.6 \\ 0.5 & 0.4 \end{bmatrix}$	Recurrent weights for the output gate $U_o = \begin{bmatrix} 0.3 & 0.4 \\ 0.5 & 0.6 \end{bmatrix}$	Biases for the output gate $b_o = [0.2, 0.1]$		
Weights for the input gate $W_i = \begin{bmatrix} 0.5 & 0.4 \\ 0.3 & 0.2 \end{bmatrix}$	Recurrent weights for the input gate $U_i = \begin{bmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{bmatrix}$											
Hidden state $h_{t-1} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$	Biases for the input gate $b_i = [0.2, 0.1]$											
Input vector $x_t = \begin{bmatrix} 0.5 \\ 0.6 \end{bmatrix}$	Weights for the output gate $W_o = \begin{bmatrix} 0.7 & 0.6 \\ 0.5 & 0.4 \end{bmatrix}$											
Recurrent weights for the output gate $U_o = \begin{bmatrix} 0.3 & 0.4 \\ 0.5 & 0.6 \end{bmatrix}$	Biases for the output gate $b_o = [0.2, 0.1]$											
	b)	Explain the steps involved in Modified Backpropagation Through Time (BPTT) algorithm.	CO1	PO1	06							
	c)	Illustrate Exploding gradient problem of RNN.	CO1	PO1	06							
		UNIT - IV										
5	a)	Design a CNN with the following specification to classify images of handwritten digits between 0 and 9. Represent the size of the intermediate feature maps precisely on the architectural design. <ul style="list-style-type: none"> • Input: (32, 32, 1) • Conv1: 32 filters, kernel: 3x3, activation function: ReLU • Pool1: 2x2 Max Pooling • Conv2: 64 filters, kernel: 3x3, activation function: ReLU • Pool2: 2x2 Max Pooling • Flatten • Dense: 128 neurons, activation function: ReLU • Output: 10 neurons, activation function: Softmax 	CO3	PO3	10							
	b)	A Convolutional Neural Network is developed for real-time video processing, such as object detection and tracking in live video feeds. Discuss how sparse interactions could be used to balance model complexity and performance in a real-time system.	CO2	PO2	06							
	c)	Write any four real time applications of adversarial training.	CO1	PO1	04							
		OR										

	6	a)	<p>Consider a Convolutional Neural Network (CNN) with the following configuration:</p> <p>An input image of size 4x4:</p> <table border="1"> <tr><td>1</td><td>2</td><td>0</td><td>3</td></tr> <tr><td>4</td><td>6</td><td>2</td><td>1</td></tr> <tr><td>1</td><td>2</td><td>5</td><td>3</td></tr> <tr><td>0</td><td>1</td><td>2</td><td>4</td></tr> </table> <p>A single 2x2 filter (kernel) with weights:</p> <table border="1"> <tr><td>0</td><td>1</td></tr> <tr><td>-1</td><td>1</td></tr> </table> <ol style="list-style-type: none"> Perform convolution operation on the given input image using the specified filter. Write the resulting feature map. Apply ReLU activation function to the result obtained in (i). Represent the updated feature map in the matrix form. Perform max pooling on the feature map obtained from (ii) using 2*2 pooling window. Determine the resulting feature map. 	1	2	0	3	4	6	2	1	1	2	5	3	0	1	2	4	0	1	-1	1	CO3	PO3	10
1	2	0	3																							
4	6	2	1																							
1	2	5	3																							
0	1	2	4																							
0	1																									
-1	1																									
		b)	Differentiate between convolutional layers, pooling layers, and fully connected layers in Convolutional Neural Network.	CO1	PO1	06																				
		c)	Differentiate between Tangent distance and Manifold distance.	CO1	PO1	04																				
UNIT - V																										
	7	a)	Summarize the contrastive divergence algorithm for training Restricted Boltzmann machine.	CO2	PO2	06																				
		b)	<p>An image denoising project uses a Restricted Boltzmann Machine which has a set of clean and noisy image pairs for training.</p> <ol style="list-style-type: none"> Illustrate the training process of Restricted Boltzmann Machine and explain how it can be used to denoise a new noisy image. what are expected challenges in this application? 	CO1	PO1	10																				
		c)	What are the challenges in applying RBM's to non-binary data compared to binary data?	CO2	PO2	04																				
