

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM6PCPAP

Max Marks: 100

Course: Parallel Architectures and Programming

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I						CO	PO	Marks																	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Elucidate how Flynn's taxonomy categorizes parallel computing architectures based on instruction and data streams.						CO1	PO2	6																
		b)	The five stages of the processor have the following latencies:						CO1	PO3	8																
			<table border="1" data-bbox="333 1033 1143 1212"> <thead> <tr> <th>Instruction</th> <th>Fetch</th> <th>Decode</th> <th>Execute</th> <th>Memory</th> <th>Write back</th> </tr> </thead> <tbody> <tr> <td>A</td> <td>310ps</td> <td>420ps</td> <td>370ps</td> <td>500ps</td> <td>200ps</td> </tr> <tr> <td>B</td> <td>150ps</td> <td>100ps</td> <td>200ps</td> <td>190ps</td> <td>140ps</td> </tr> </tbody> </table> <p>Each stage in the pipeline costs 10ps extra for the registers between stages. Calculate the given below parameters for both Non-pipelined processor and Pipelined processor:</p> <ol style="list-style-type: none"> Cycle time Latency Throughput What is the cycle time, latency and throughput, when one of the longest stage in the pipeline is split into 2 equal halves. 								Instruction	Fetch	Decode	Execute	Memory	Write back	A	310ps	420ps	370ps	500ps	200ps	B	150ps	100ps	200ps	190ps
Instruction	Fetch	Decode	Execute	Memory	Write back																						
A	310ps	420ps	370ps	500ps	200ps																						
B	150ps	100ps	200ps	190ps	140ps																						
	c)	An examination of a program has revealed a speedup of 2 when executed on 4 cores. Determine the serial fraction according to Amdahl's and Gustafson's laws.						CO2	PO3	6																	
UNIT - II																											
	2	a)	Explain how optimal load control in a multiprogrammed multiprocessing virtual memory system ensures efficient utilization of CPUs and I/O resources.						CO2	PO2	6																
		b)	Explain virtual memory system and three main types of locality of reference with a suitable example.						CO2	PO2	6																
		c)	Elaborate the principles of cache mapping techniques and their impact on parallel computing performance.						CO1	PO2	8																

		OR																																																																																							
3	a)	Differentiate FIFO (First-In-First-Out) and LRU (Least Recently Used) page replacement algorithms with an example.	CO2	PO3	7																																																																																				
	b)	Explain virtual to real page address translation in paged memory system and six fields in page map entry.	CO1	PO2	6																																																																																				
	c)	Explain the design considerations of the input-output interface in a computing system and discuss the contribution of Direct Memory Access (DMA) controllers in optimizing data transfer.	CO2	PO3	7																																																																																				
	UNIT - III																																																																																								
4	a)	Explain basic linear pipelining with time space diagram.	CO2	PO2	6																																																																																				
	b)	For the given sequence of stages draw the reservation table and find the forbidden latency. Sa, Sc, Sa, Sb, Sc, Sb	CO2	PO2	4																																																																																				
	c)	Consider the following pipeline reservation table <table border="1" style="margin-left: 20px;"> <tr> <td rowspan="2" style="text-align: center;">Stages</td> <td colspan="8" style="text-align: center;">clock cycles</td> </tr> <tr> <td style="text-align: center;">1</td><td style="text-align: center;">2</td><td style="text-align: center;">3</td><td style="text-align: center;">4</td><td style="text-align: center;">5</td><td style="text-align: center;">6</td><td style="text-align: center;">7</td><td style="text-align: center;">8</td> </tr> <tr> <td style="text-align: center;">S1</td><td style="text-align: center;">x</td><td></td><td></td><td></td><td></td><td style="text-align: center;">x</td><td></td><td style="text-align: center;">x</td> </tr> <tr> <td style="text-align: center;">S2</td><td></td><td style="text-align: center;">x</td><td></td><td style="text-align: center;">x</td><td></td><td></td><td></td><td></td> </tr> <tr> <td style="text-align: center;">S3</td><td></td><td></td><td style="text-align: center;">x</td><td></td><td style="text-align: center;">x</td><td></td><td style="text-align: center;">x</td><td></td> </tr> </table> (a) What are the forbidden latencies and permissible latencies? (b) Draw the state transition diagram. (c) List simple cycles and greedy cycles. (d) Determine the minimal average latency.	Stages	clock cycles								1	2	3	4	5	6	7	8	S1	x					x		x	S2		x		x					S3			x		x		x		CO3	PO4	10																																								
Stages	clock cycles																																																																																								
	1	2	3	4	5	6	7	8																																																																																	
S1	x					x		x																																																																																	
S2		x		x																																																																																					
S3			x		x		x																																																																																		
	OR																																																																																								
5	a)	Elaborate pipeline classification schemes with suitable examples.	CO3	PO3	6																																																																																				
	b)	Draw a 4-stage floating point adder for the given example and explain the stages involved. A= 0.912×10^2 B= 0.8523×10^3	CO3	PO3	10																																																																																				
	c)	Find the latency cycle and average latency for the given reservation table. <table border="1" style="margin-left: 20px;"> <tr> <td></td><td style="text-align: center;">1</td><td style="text-align: center;">2</td><td style="text-align: center;">3</td><td style="text-align: center;">4</td><td style="text-align: center;">5</td><td style="text-align: center;">6</td><td style="text-align: center;">7</td><td style="text-align: center;">8</td><td style="text-align: center;">9</td><td style="text-align: center;">10</td><td style="text-align: center;">11</td><td style="text-align: center;">12</td><td style="text-align: center;">13</td><td style="text-align: center;">14</td><td style="text-align: center;">15</td><td style="text-align: center;">16</td><td style="text-align: center;">17</td><td style="text-align: center;">18</td><td style="text-align: center;">19</td><td style="text-align: center;">20</td><td style="text-align: center;">21</td> </tr> <tr> <td style="text-align: center;">S1</td><td style="text-align: center;">X1</td><td style="text-align: center;">X2</td><td></td><td></td><td style="text-align: center;">X1</td><td style="text-align: center;">X2</td><td style="text-align: center;">X1</td><td style="text-align: center;">X2</td><td style="text-align: center;">X3</td><td style="text-align: center;">X4</td><td></td><td></td><td></td><td style="text-align: center;">X3</td><td style="text-align: center;">X4</td><td style="text-align: center;">X3</td><td style="text-align: center;">X4</td><td style="text-align: center;">X5</td><td style="text-align: center;">X6</td><td></td> </tr> <tr> <td style="text-align: center;">S2</td><td></td><td style="text-align: center;">X1</td><td style="text-align: center;">X2</td><td style="text-align: center;">X1</td><td style="text-align: center;">X2</td><td></td><td></td><td></td><td style="text-align: center;">X3</td><td style="text-align: center;">X4</td><td style="text-align: center;">X3</td><td style="text-align: center;">X4</td><td></td><td></td><td></td><td></td><td></td><td style="text-align: center;">X5</td><td>.....</td> </tr> <tr> <td style="text-align: center;">S3</td><td></td><td style="text-align: center;">X1</td><td style="text-align: center;">X2</td><td style="text-align: center;">X1</td><td></td><td style="text-align: center;">X1</td><td style="text-align: center;">X2</td><td></td><td></td><td></td><td style="text-align: center;">X3</td><td style="text-align: center;">X4</td><td style="text-align: center;">X3</td><td></td><td style="text-align: center;">X3</td><td></td><td></td><td></td><td></td><td></td> </tr> </table>		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	S1	X1	X2			X1	X2	X1	X2	X3	X4				X3	X4	X3	X4	X5	X6		S2		X1	X2	X1	X2				X3	X4	X3	X4						X5	S3		X1	X2	X1		X1	X2				X3	X4	X3		X3						CO3	PO3	4
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21																																																																				
S1	X1	X2			X1	X2	X1	X2	X3	X4				X3	X4	X3	X4	X5	X6																																																																						
S2		X1	X2	X1	X2				X3	X4	X3	X4						X5																																																																						
S3		X1	X2	X1		X1	X2				X3	X4	X3		X3																																																																										
	UNIT - IV																																																																																								
6	a)	How does parallelism differ in GPUs and CPUs. Identify the key factors that contribute to this distinction.	CO3	PO5	6																																																																																				
	b)	Elucidate the memory hierarchy along with its characteristics to address the diverse requirements of GPU workloads.	CO3	PO5	6																																																																																				

	c)	With a neat sketch explain the concepts of threads, grids, and blocks in CUDA. Illustrate how computations are divided into threads to facilitate parallel processing.	CO3	PO5	8
		UNIT – V			
7	a)	What are the key architectural components of CUDA, and how do they contribute to the parallel processing capabilities of GPUs?	CO3	PO5	6
	b)	Write and explain a CUDA program to add two matrices considering multi-dimensional blockIdx, threadIdx and blockDim.	CO3	PO5	7
	c)	Explain the steps to execute a CUDA program with a neat diagram.	CO3	PO5	7
