

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM6HSSMM

Max Marks: 100

Course: Stochastic Modelling for Machine Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks												
1	a)	Describe a stochastic process. Give one example for the following: i. Discrete state and Continuous time stochastic processes ii. Continuous state and discrete time stochastic processes	CO1	PO1	05												
	b)	Stock price cannot be modelled using Brownian motion, Justify the statement with relevant reasons.	CO2	PO2	05												
	c)	For the closing price dataset, <table border="1" data-bbox="333 1123 1071 1212"> <tr> <td>Day</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> </tr> <tr> <td>Closing price in \$</td> <td>100</td> <td>102</td> <td>101</td> <td>105</td> <td>107</td> </tr> </table> Compute the following for each day from Day 2 to Day 5 i. Simple return ii. Gross return iii. Log return	Day	1	2	3	4	5	Closing price in \$	100	102	101	105	107	CO3	PO3	10
Day	1	2	3	4	5												
Closing price in \$	100	102	101	105	107												
		OR															
2	a)	Explain any three types of stochastic process classified on the basis of relationship among the random variables.	CO1	PO1	05												
	b)	Discuss the reasons for modelling returns rather than prices in investment analysis. Highlight the advantages of using returns for evaluating investment performance and assessing risk.	CO2	PO2	05												
	c)	Find the rate of return from an investment that, for an initial payment of 100, yields return 60 at the end of the two periods.	CO3	PO3	10												
		UNIT - II															
3	a)	Define Markov Chain. Give any three properties of transition probability matrix.	CO1	PO1	05												
	b)	A gambler has \$2. He bets \$1 at a time and wins \$1 with probability 0.4. He stops playing if he loses all his money or wins \$4. i. Summarize the given concept in the form of transition probability matrix. ii. Calculate the probability that he has lost his money at the end of 3 plays.	CO3	PO4	09												

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		iii. Calculate the probability that the game lasts for more than 4 plays.			
	c)	Derive the Chapman-Kolmogorov equation for a Markov Chain process. Also explain the same in detail.	CO2	PO2	06
		OR			
4	a)	<p>A Reinforcement learning agent navigates a grid with three states: State A, State B, and State C. The transition probabilities are:</p> <p>State A: 0.6 to stay in State A, 0.4 to move to State B.</p> <p>State B: 0.5 to move to State A, 0.5 to move to State C.</p> <p>State C: 0.7 to move to State B, 0.3 to stay in State C.</p> <ol style="list-style-type: none"> Construct the transition probability Matrix (TPM) for the system. Calculate the 2-step transition probability from State A to State C using the TPM. Given the initial state distribution as [1, 0, 0] (starting in State A), calculate the state distribution after 3 steps. Interpret the result. 	CO3	PO3	10
	b)	Differentiate between a first-order Markov process and a higher-order Markov process, and explain how a higher- order Markov process can be transformed into an equivalent first-order Markov process.	CO1	PO1	05
	c)	Verify the process $X(t) = \frac{A}{\pi} \cos(\omega t + \varphi)$, $0 \leq \varphi \leq \pi$ is weak sense stationary or not.	CO2	PO3	05
		UNIT - III			
5	a)	Explain the following with examples: <ol style="list-style-type: none"> Absorbing State. Irreducible Markov chain. Classification of States. 	CO1	PO2	08
	b)	<p>For the given transition probability matrix with the states 1,2,3,4 and 5</p> $P = \begin{pmatrix} 1/2 & 0 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}.$ <ol style="list-style-type: none"> Identify and classify the states as either recurrent or transient. Is the Markov Chain Ergodic? 	CO2	PO2	08
	c)	Obtain the mean recurrence times for the given transition probability matrix,	CO1	PO1	04
		$M = \begin{pmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.1 & 0.2 & 0.5 & 0.2 \\ 0.1 & 0.2 & 0.6 & 0.1 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix}$			
		OR			
6	a)	A coffee shop has three types of daily customer volume patterns: Low (L), Medium (M), and High (H). The transition probabilities between these patterns form a Markov chain with the transition probability matrix:	CO3	PO2	06

		$P = \begin{pmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.5 & 0.3 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$. Find the steady state distribution			
	b)	Consider a Hidden Markov Model with three hidden states {A, B, C} and two observable states {X, Y}. Given the following transition(T) and emission probabilities(E): $T = \begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.5 & 0.3 & 0.2 \\ 0.1 & 0.4 & 0.5 \end{pmatrix}$ $E = \begin{pmatrix} 0.6 & 0.4 \\ 0.3 & 0.7 \\ 0.5 & 0.5 \end{pmatrix}$ The initial distribution is given by (0.4, 0.2, 0.4) Analyze the hidden states corresponding to the observed sequence {X, Y}.	CO3	PO4	10
	c)	Illustrate the Markov decision process with recycling robot example.	CO2	PO1	04
		UNIT - IV			
7	a)	Describe how the ϵ - greedy approach can be used to balance exploration and exploitation.	CO2	PO2	04
	b)	With respect to reinforcement learning, explain the following: i. Provide the Temporal Difference (TD) algorithm and also analyze how bootstrapping is utilized within it. ii. Give the Q-learning algorithm.	CO2	PO3	10
	c)	Analyze how reinforcement learning method differ from supervised and unsupervised learning methods with suitable examples	CO2	PO2	06
		OR			
8	a)	Consider a simple 2×3 grid world environment where an agent can move up, down, left, or right. The goal state is located at the top-right corner. The agent starts at the bottom-left corner. The agent receives a reward of +10 for reaching the goal state and 0 for all other transitions. The episode ends when the agent reaches the goal state. Assuming $\gamma = 0.8$, i. Construct the Q-table ii. Identify the optimal policy, corresponding to actions with maximal Q Values.	CO3	PO4	10
	b)	Derive mathematical expression for Bellman's value function.	CO2	PO3	06
	c)	Differentiate between on-policy and off-policy methods based on Reinforcement learning.	CO2	PO1	04
		UNIT - V			
9	a)	Differentiate between actor-critic, value-based, and policy-based approaches.	CO2	PO2	06
	b)	Discuss the advantages of employing policy-gradient technique	CO1	PO1	04
	c)	Explain the following: i. Architecture of Actor-Critic Algorithm (ACA) ii. Update rules for ACA.	CO2	PO2	10
		OR			
10	a)	Design an example problem where the Actor-Critic algorithm can be applied. i. Define the state space, action space, and reward function.	CO2	PO2	10

		ii. Explain how the critic's value function and the actor's policy are updated during training.			
	b)	Elaborate on Applications of Actor-Critic Algorithm.	CO1	PO1	05
	c)	Explain scenarios where Policy Gradient methods are preferred over value-based methods like Q-Learning.	CO1	PO1	05

B.M.S.C.E. - ODD SEM 2024-25