

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM6HSSMM

Max Marks: 100

Course: Stochastic Modelling for Machine Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks														
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain any three types of stochastic process classified on the basis of relationship among the random variables.			CO1	PO1	05														
		b)	Prove that Brownian Motion is a martingale. And also consider a particle undergoing Brownian motion in a one-dimensional space. Let X_t denote the position of the particle at time t , where $t \geq 0$. Assume that X_t follows a Standard Brownian Motion process. Calculate the joint probability distribution for the particle's position at these three time points, i.e. $P(X_1=0.5, X_2=1.2, X_3=-0.8)$			CO3	PO4	10														
		c)	Prove that the mean and variance of conditional distribution $E[X(S) X(t) = A] = \frac{x}{y} * A$, where $x < y$.			CO2	PO3	05														
	OR																					
	2	a)	Discuss the reasons for modelling returns rather than prices in investment analysis. Highlight the advantages of using returns for evaluating investment performance and assessing risk.			CO1	PO2	06														
		b)	For the given stock price dataset:	<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Day</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>Stock Price(\$)</td><td>150</td><td>155</td><td>153</td><td>160</td><td>165</td></tr> </table>					Day	1	2	3	4	5	Stock Price(\$)	150	155	153	160	165	CO1	PO2
Day	1	2	3	4	5																	
Stock Price(\$)	150	155	153	160	165																	
		Calculate the following for each day from Day 2 to Day 5: i. Percentage Change in Price. ii. Daily Log Return.																				
	c)	Describe a stochastic process. Give one example for the following: i. Discrete state and Continuous time stochastic processes ii. Continuous state and discrete time stochastic processes			CO1	PO1	06															
UNIT - II																						
	3	a)	Verify the process $X(t) = \frac{A}{\pi} \cos(\omega t + \varphi)$, $0 \leq \varphi \leq \pi$ is weak sense stationary or not.			CO2	PO3	05														
		b)	A Company is considering Markov Theory to analyse brand switching between 3 different brands (brand A, brand B, brand C)			CO3	PO3	07														

		<p>of storage devices. Survey data has been collected and shown below in the form of transition probability matrix.</p> $P = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.2 & 0.4 & 0.4 \\ 0.1 & 0.3 & 0.6 \end{pmatrix}$ <p>i. Draw the digraph. ii. Assume that currently brand A is in use. Compute the probability for the company in brand B, followed by next time the company may use brand A again.</p>			
	c)	<p>Three boys A, B, C are throwing ball to each other, A always throws the ball to B and B always throws the ball to C. C is just as likely to throw the ball B as to A. If C was the first person to throw the ball find the probabilities that after three throws.</p> <p>i. A has the ball ii. B has the ball iii. C has the ball</p>	CO2	PO4	08
		OR			
4	a)	<p>Differentiate between a first-order Markov process and a higher-order Markov process, and explain how a higher-order Markov process can be transformed into an equivalent first-order Markov process.</p>	CO1	PO1	05
	b)	<p>Derive the Chapman-Kolmogorov equation for a Markov Chain process. Also explain the same in detail.</p>	CO2	PO2	06
	c)	<p>A Reinforcement learning agent navigates a grid with three states: State P, State Q, and State R. The transition probabilities are: State P: 0.3 to stay in State P, 0.7 to move to State Q. State Q: 0.4 to move to State P, 0.6 to move to State R. State R: 0.8 to move to State Q, 0.2 to stay in State R.</p> <p>i. Construct the transition probability Matrix (TPM) for the system. ii. Calculate the 2-step transition probability from State P to State R using the TPM. Given the initial state distribution as [0, 1, 0] (starting in State P), calculate the state distribution after 2 steps. Interpret the result.</p>	CO3	PO3	09
		UNIT - III			
5	a)	<p>Illustrate the Markov decision process with suitable example.</p>	CO2	PO2	05
	b)	<p>If the state space $S=\{0,1,2,3,\dots\}$ and the transition probability matrix is given by $p_r, p_{r+1}=1/4=p_{r,0}$ for all r belong to S</p> <p>i. Construct the transition probability matrix ii. Analyse whether the Markov chain is ergodic. iii. Calculate the mean time spent on transient state.</p>	CO2	PO3	10
	c)	<p>What are the limitations of Markov chain model? How to determine limiting distribution of Markov chain?</p>	CO1	PO1	05
		OR			
6	a)	<p>For the given digraph shown in the Figure 4a.</p>	CO2	PO3	10

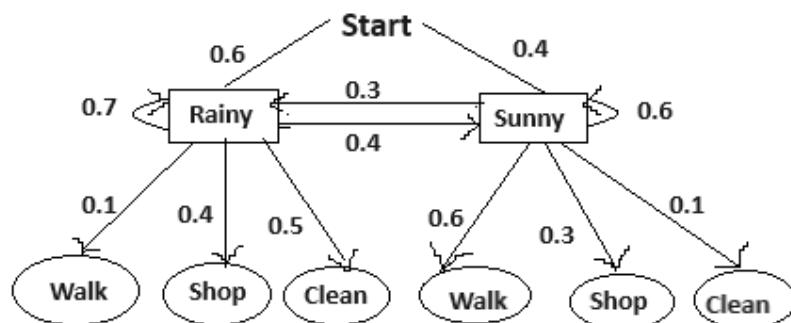


Figure 4a.

- Identify the Hidden, observable states and initial probabilities.
- Obtain Transition Probability Matrix T and Emission probability matrix E.
- Identify most likely hidden states corresponding to observed sequence { walk, shop, walk }.

b) Explain the following:

- Absorbing state
- Reducible and Irreducible state

c) The transition matrix of the Markov chain $\{x_n, n \geq 0\}$ is

$$T = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.3 & 0.4 & 0.3 \\ 0.5 & 0.4 & 0.1 \end{pmatrix}$$

The initial distribution is given by:

$$P(X_0=1)=0.6; P(X_0=2)=0.3; P(X_0=3)=0.1.$$

Compute the distribution of X_1 and probabilities of the following:

- $P(X_2=1)$
- $P(X_1=1, X_2=2, X_3=3 | X_0=1)$

UNIT - IV

7 a) Explain the following with suitable equations:

- Monte-Carlo Reinforcement learning
- Action-value functions

b) For the given reward matrix R, construct the Q-table by applying the Q-learning algorithm.

$$R = \begin{pmatrix} -1 & 0 & -1 & 0 & -1 & -1 \\ 0 & -1 & 100 & -1 & 0 & -1 \\ -1 & -1 & 0 & -1 & -1 & -1 \\ 0 & -1 & 0 & -1 & -1 & -1 \\ -1 & 0 & -1 & 0 & -1 & 0 \\ -1 & -1 & 100 & -1 & 0 & -1 \end{pmatrix}$$

c) Differentiate between on-policy and off-policy methods.

OR

8 a) Illustrate the Reinforcement learning method with suitable example. And also give the Q-learning algorithm with respect to reinforcement learning.

b) Derive mathematical equation for bellman's value function.

	c)	Analyze how ϵ -greedy method different from SoftMax action selection method.	CO3	PO3	05
		UNIT - V			
9	a)	Write and explain Actor Critic Algorithm (ACA).	CO2	PO2	10
	b)	Illustrate the actor-critic method with an example.	CO2	PO2	05
	c)	An engineer working on a drone navigation project with a goal to train an autonomous drone to navigate in a complex environment with obstacles and checkpoints. Explain how policy gradient method is more suitable if the action space for the drone is continuous.	CO2	PO1	05
		OR			
10	a)	Explain scenarios where Policy Gradient methods are preferred over value-based methods like Q-Learning.	CO1	PO1	06
	b)	Discuss the advantages of employing policy-gradient technique	CO1	PO1	04
	c)	Explain the following: i. Architecture of Actor-Critic Algorithm (ACA) Update rules for ACA.	CO2	PO2	10
