

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM6PEVCV

Max Marks: 100

Course: Video Analytics Using OpenCV

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Define callback functions and explain its significance in handling user events in OpenCV.	CO1	PO1	03
	b)	Design an user interface in OpenCV that incorporates trackbars to enable interactive parameter adjustment for image processing operations.	CO1	PO3	07
	c)	i. Implement an automated sunglass filter using OpenCV to dynamically detect and overlay sunglasses onto faces in a live video feed. ii. Provide the algorithmic steps involved for the given scenario.	CO1	PO3	10
OR					
2	a)	Differentiate traditional image processing from computer vision.	CO2	PO2	06
	b)	Explain the basic mathematical operations on images using OpenCV.	CO1	PO1	06
	c)	Create a Python program that blends two images dynamically, where the blending factor is controlled by the position of a slider.	CO3	PO5	08
UNIT - II					
3	a)	Write a program using OpenCV to compute: i) Display the gradient magnitude ii) Directions of an image using Sobel operators.	CO3	PO2	10
	b)	Explain the Simple Blob Detector parameters in OpenCV.	CO1	PO1	05
	c)	Define thresholding. Elucidate the different types of thresholding techniques in OpenCV.	CO2	PO1	05
OR					
4	a)	Create an OpenCV-based interactive application where users can adjust the kernel size and observe the real-time smoothing effect on an image.	CO3	PO5	06
	b)	Analyze the impact of kernel size and shape on morphological operations like erosion and dilation for noise removal.	CO2	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Evaluate the performance of bilateral filtering in preserving edges while smoothing images.	CO2	PO3	08
		UNIT - III			
5	a)	i. Illustrate how Hough Circle Transforms can be utilized for automatic cell detection and measurement in medical imaging. ii. Identify the challenges and optimizations required for accurate results.	CO3	PO3	10
	b)	i. Implement an image stitching application using Oriented FAST and Rotated BRIEF (ORB) features to create panoramic images from a series of overlapping photographs. ii. Comprehend the key steps involved in seamless panorama generation.	CO3	PO3	10
		OR			
6	a)	Implement a program in OpenCV to align image-based documents for uniform presentation of documents.	CO3	PO3	10
6	b)	Illustrate the significance of homography to merge the camera feeds into a single panoramic view for comprehensive monitoring.	CO3	PO3	10
		UNIT - IV			
7	a)	Design an image classification pipeline for a medical diagnosis application, highlight the steps involved from data collection to model deployment.	CO3	PO3	10
7	b)	i. Outline the key steps involved in integrating the GrabCut algorithm into a digital pathology workflow. ii. Describe the long-term implications and benefits of incorporating GrabCut and similar algorithms into digital pathology practices.	CO1	PO1	10
		OR			
8	a)	Build a pipeline using optical flow to enhance video compression. Elucidate how motion vectors can be used to reduce redundancy and improve compression efficiency.	CO3	PO3	10
8	b)	Describe video stabilization system to handle complex camera motions, such as rotations and zooms using OpenCV.	CO3	PO3	10
		UNIT - V			
9	a)	Outline the various challenges of class imbalance.	CO1	PO1	05
9	b)	Discuss the steps in image classification system using caffe.	CO1	PO1	05
9	c)	Design a Single Short Multibox Detector (SSD) based face detection system for a video conferencing application.	CO3	PO3	10
		OR			
	a)	Compare and contrast the performance of pre-trained models in Caffe and TensorFlow for classifying natural images.	CO2	PO1	06

	10	b)	Analyze the limitations of SSD-based face detection when applied to images with varying lighting conditions and occlusions.	<i>CO2</i>	<i>PO1</i>	06
		c)	Create an OpenCV-based application that uses YOLO to detect and count specific objects (e.g., vehicles or people) in a given video feed.	<i>CO3</i>	<i>PO5</i>	08

B.M.S.C.E. - EVEN SEM 2024-25