

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM6PEVCV

Max Marks: 100

Course: Video Analytics Using OpenCV

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the image transformations in OpenCV.	<i>CO1</i>	<i>PO1</i>	06
	b)	Deduce the steps in creating a simple sunglass filter. Outline the various challenges and solutions involved in the given scenario.	<i>CO1</i>	<i>PO1</i>	08
	c)	Apply callback functions in OpenCV to handle mouse events.	<i>CO2</i>	<i>PO3</i>	06
OR					
2	a)	Write a program to use a bitwise AND operation to extract a region of interest (ROI) from an image.	<i>CO2</i>	<i>PO2</i>	06
	b)	If you were to rotate an image by 45 degrees, how would you handle the pixels that fall outside the image boundary?	<i>CO2</i>	<i>PO1</i>	06
	c)	Create a Python program to annotate an image with labels and bounding boxes dynamically based on user input via mouse clicks.	<i>CO3</i>	<i>PO5</i>	08
UNIT - II					
3	a)	Differentiate opening and closing morphological operations.	<i>CO1</i>	<i>PO2</i>	04
	b)	Apply suitable image gradients for detecting the edges of objects on a factory conveyor belt.	<i>CO3</i>	<i>PO2</i>	08
	c)	Infer the principles of blob detection in binary images with key parameters involved and their influence detection process using OpenCV.	<i>CO2</i>	<i>PO1</i>	08
OR					
4	a)	Compare and contrast adaptive thresholding with global thresholding for images with uneven lighting conditions.	<i>CO2</i>	<i>PO2</i>	06
	b)	Evaluate the performance of bilateral filtering in preserving edges while smoothing images.	<i>CO2</i>	<i>PO3</i>	06
	c)	Design a program to apply and visualize the effects of different filters (e.g., Gaussian, median, and bilateral) on a noisy image.	<i>CO3</i>	<i>PO5</i>	08
UNIT - III					
5	a)	Apply Hough Transform in a lane marking detection system.	<i>CO3</i>	<i>PO3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	i. Summarize the challenges of capturing images with high dynamic range using standard cameras. ii. How does High Dynamic Range Imaging (HDR) imaging address these challenges?	CO2	PO3	10
		OR			
6	a)	Illustrate the importance of homography to merge the camera feeds into a single panoramic view for comprehensive monitoring.	CO3	PO2	10
	b)	Explain the concept of image inpainting and its significance.	CO1	PO1	05
	c)	Describe the different Geometric Transformation models available in OpenCV.	CO2	PO1	05
		UNIT - IV			
7	a)	Apply GrabCut algorithm for a photo editing application that allows users to extract objects from images.	CO3	PO1	08
	b)	Explain the MeanShift and CamShift algorithms for object tracking. Compare their effectiveness and provide a scenario where each would be particularly useful.	CO2	PO3	06
	c)	Elucidate multiple object tracking in a crowded scene using OpenCV.	CO3	PO2	06
		OR			
8	a)	Exemplify the techniques and algorithms that can be used in a security system which detects and identifies objects in real-time video feeds, Implement using OpenCV and a pre-trained deep learning model.	CO3	PO3	08
	b)	Explain the concept of motion estimation using optical flow.	CO1	PO2	04
	c)	Implement Kalman Filter to predict the future state of an object, and update it with new measurements.	CO2	PO3	08
		UNIT - V			
9	a)	Illustrate image classification for different animals using the Caffe deep learning framework.	CO3	PO3	08
	b)	Elaborate on the architecture and working of the OpenPose model in multi-person pose estimation.	CO2	PO2	04
	c)	i. Examine the principles of Single Short Multibox Detector (SSD) based face detection. ii. Distinguish between Single Short Multibox Detector (SSD) based face detection with traditional face detection techniques.	CO1	PO2	08
		OR			
10	a)	Evaluate the suitability of SSD versus YOLO for detecting small objects in drone-captured imagery.	CO2	PO3	06
	b)	Compare and contrast the performance of pre-trained models in Caffe and TensorFlow for classifying natural images.	CO3	PO1	06
	c)	Design an OpenCV-based system that uses a TensorFlow pre-trained model to classify images in real time and display the results with confidence scores.	CO3	PO5	08