

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM7PEACY

Max Marks: 100

Course: AI for Cyber Security

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the evolution of Artificial Intelligence (AI) from expert systems to data mining, providing examples in each stage.			<i>CO1</i>	<i>PO1</i>	08
		b)	Explain the significance of expert systems in the development of AI, highlighting their strengths and limitations.			<i>CO2</i>	<i>PO1</i>	06
		c)	With suitable examples explain the indeterministic nature of reality that influence AI models.			<i>CO1</i>	<i>PO1</i>	06
			OR					
	2	a)	Describe the process of mining data for models in the context of AI, including data preprocessing and feature selection for applying in Cybersecurity.			<i>CO1</i>	<i>PO1</i>	08
		b)	Compare and contrast expert systems and machine learning, focusing on their methodologies and applications.			<i>CO2</i>	<i>PO2</i>	06
		c)	Identify the challenges of AI in providing Cybersecurity.			<i>CO1</i>	<i>PO1</i>	06
			UNIT - II					
	3	a)	Explain how a Perceptron can be used to detect spam. Provide a simple example and outline the steps involved.			<i>CO2</i>	<i>PO1</i>	08
		b)	Identify the pros and cons of using Perceptron for spam detection and suggest improvements.			<i>CO2</i>	<i>PO1</i>	06
		c)	Analyse how a linear classifier work in the context of spam filters with suitable example.			<i>CO2</i>	<i>PO2</i>	06
			OR					
	4	a)	Elucidate the Support Vector Machine optimization strategy for spam detection, and provide a practical example.			<i>CO2</i>	<i>PO1</i>	08

	b)	Explain the process of phishing detection using logistic regression, detailing the key steps.	CO2	PO1	06
	c)	With suitable example explain the role of decision trees in phishing detection.	CO2	PO2	06
	UNIT - III				
5	a)	Outline the various malware detection strategies.	CO1	PO1	08
	b)	Describe the methodology of static malware analysis, and explain its significance.	CO1	PO1	05
	c)	Identify the challenges faced during static malware analysis. Provide solutions to overcome the challenges.	CO2	PO2	07
	OR				
6	a)	Explain the tools and techniques used in dynamic malware analysis, providing examples of each.	CO1	PO1	08
	b)	Write a note on the following with suitable examples with respect to malware analysis: i) Botnets ii) Disassemblers	CO1	PO1	05
	c)	Describe the anti-analysis tricks used by malware to evade detection, and suggest countermeasures.	CO2	PO2	07
	UNIT - IV				
7	a)	Describe the network anomaly detection techniques used in cybersecurity, and their importance.	CO1	PO1	08
	b)	Differentiate between Host Intrusion Detection Systems and Network Intrusion Detection Systems.	CO2	PO2	05
	c)	“Service logs can be turned into datasets for anomaly detection”. Justify the statement and provide a step-by-step approach.	CO3	PO3	07
	OR				
8	a)	Explain the importance of securing user authentication in cybersecurity and the common challenges faced.	CO1	PO1	08
	b)	Exemplify the common practices to prevent authentication abuse.	CO2	PO2	05
	c)	Explain the process of detecting fake logins into the user accounts.	CO3	PO1	07
	UNIT - V				
9	a)	Explain the fraud detection algorithms used in cloud AI solutions and their applications.	CO2	PO1	08
	b)	Compare expert-driven predictive models and data-driven predictive models, highlighting their advantages and disadvantages.	CO2	PO2	07

		c)	Elucidate how machine learning can be used in credit card fraud detection.	<i>CO1</i>	<i>PO1</i>	05
			OR			
	10	a)	Describe the best practices for designing a Fraud Detection and Prevention System (FDPS), providing detailed steps.	<i>CO2</i>	<i>PO2</i>	08
		b)	Explain how FDPS combines expert-driven and data-driven models, and their complementary benefits.	<i>CO2</i>	<i>PO1</i>	07
		c)	Identify the possible credit card fraud scenarios where credit card information can be compromised.	<i>CO1</i>	<i>PO1</i>	05

B.M.S.C.E. - ODD SEM 2024-25