

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: 07

Branch: Artificial Intelligence & Machine Learning

Duration: 3 hrs.

Course Code: 24AM7PCGAL

Max Marks: 100

Course: Generative AI with Large Language Models

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the Evidence Lower Bound (ELBO) used in variational autoencoders, given the following relationships: $\log p(x) = E_{q(z x)} [\log p(x z)] - D_{KL}(q(z x) p(z))$	CO1	PO3	07
	b)	Distinguish between Generative and Discriminative models.	CO2	PO2	06
	c)	Given $\text{mean}(x)=4.8$, $\text{mean}(y)=5.9$, $\text{stddev}(x)=1.1$, $\text{stddev}(y)=0.8$, random sample for x: $\epsilon_x=-0.4$, random sample for y: $\epsilon_y=0.6$ Calculate latent space variable (z) and the reconstructed data points (\hat{x} , \hat{y}) of a VAE model.	CO3	PO3	07
OR					
2	a)	Explain how the Convolutional Neural Networks (CNNs) can be applied for Generative AI tasks.	CO1	PO2	06
	b)	For a VAE with latent variable $z \sim N(\mu, \sigma^2)$, derive the gradient of the reparameterization trick $z = \mu + \sigma \cdot \epsilon$, where $\epsilon \sim N(0,1)$. Explain its significance in training.	CO2	PO3	08
	c)	Given: Input (X): [0.5, 0.6, 0.7, 0.8] Encoder Weights (W_e): [[0.3, 0.2], [0.5, 0.4], [0.2, 0.3], [0.4, 0.5]] Encoder Biases (b_e): [0.1, 0.2] Decoder Weights (W_d): [[0.4, 0.3, 0.2, 0.5], [0.5, 0.4, 0.3, 0.2]] Decoder Biases (b_d): [0.15, 0.1, 0.05, 0.2] Illustrate the encoder-decoder process of an Autoencoder by i. Constructing a latent space representation Z of the given input vector X. ii. Reconstructing the input vector 'X' using results of (i).	CO3	PO3	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	In a transformer model using the dot-product attention mechanism ,given the input vectors Q, K, and V with dimensions d_q , d_k , and d_v respectively, derive the computational complexity of computing the attention mechanism for a sequence of length N.	CO1	PO2	07
	b)	Elaborate on Multi GPU compute strategies with respect to parallelism.	CO2	PO1	06
	c)	Apply tokenization, embedding ($d_{model} = 4$, row major embedding from 0.1 to 2.0) and positional encoding processes of a Transformer Model on the sentence “AI is amazing.(fullstop)” and Compute the Final Embedded Tokens matrix.	CO3	PO1	07
OR					
4	a)	In what ways does the BloombergGPT model outperform general-purpose models in financial tasks? Explain using two specific financial applications highlighting its advantages.	CO2	PO2	05
	b)	Differentiate between one-shot prompting and few-shot prompting.	CO1	PO2	05
	c)	Using the Layer Normalization parameters: Scaling Factor(γ)=2, shifting Factor(β)=1, apply Layer Normalization to the input vector [1,3,5,7] and determine the transformed output vector.	CO3	PO3	10
UNIT - III					
5	a)	Write architecture of T5 model and explain its working.	CO1	PO2	07
	b)	In Reinforcement Learning with Human Feedback (RLHF), given a sequence of 3 actions with rewards [8, 12, 20] and a discount factor of 0.85, calculate the discounted cumulative reward for the sequence.	CO1	PO3	05
	c)	Derive the mathematical formulation of LoRA.	CO3	PO3	08
OR					
6	a)	Elaborate on Bilingual Evaluation Understudy (BLEU) metric.	CO2	PO2	07
	b)	Calculate the total reward received over 5 iterations in RLHF, given a 20% reward decay per iteration and an initial reward of 100.	CO1	PO3	05
	c)	Explain parameter-efficient fine-tuning (PEFT) techniques and how LoRA differs from traditional fine-tuning.	CO3	PO3	08
UNIT - IV					
7	a)	Explain the retrieval module and the generator module of a RAG along with required mathematical equations.	CO1	PO2	10

	b)	<p>The reward model R_{chatbot} is defined as a weighted combination of response relevance (R_{rel}) and user engagement (R_{eng}).</p> <p>Given:</p> <p>Weight $W_{\text{rel}} = 0.6$, $W_{\text{eng}} = 0.4$</p> <p>Relevance Scores (R_{rel}) = [0.8, 0.9, 0.7]</p> <p>Engagement Scores (R_{eng}) = [0.6, 0.8, 0.9]</p> <ol style="list-style-type: none"> Derive the R_{chatbot} relation. Compute R_{chatbot} scores with respect to the R_{rel} and R_{eng} values recorded. Determine the best response and justify the selection. 	<i>CO3</i>	<i>PO3</i>	10
		OR			
8	a)	Using the respective mathematical representations, explain the construction process of a reward model.	<i>CO1</i>	<i>PO2</i>	10
	b)	<p>Derive the clipped surrogate objective of Proximal Policy Optimization (PPO) technique and determine the $L_{\text{CLIP}}(\theta)$ value using the provided data:</p> <p>Probability ratio: $r_t(\theta)=1.2$</p> <p>Advantage estimate of time: $A_t=0.5$</p> <p>Clipping parameter: $\epsilon=0.1$</p>	<i>CO3</i>	<i>PO3</i>	10
		UNIT - V			
9	a)	Elaborate on the generator and the discriminator objective function of a Style Transfer Generative Adversarial Network (GAN).	<i>CO2</i>	<i>PO1</i>	06
	b)	Given a GAN with a discriminator loss $L_D = -E[\log(D(x))] - E[\log(1-D(G(z)))]$ derive the updates for the discriminator weights.	<i>CO1</i>	<i>PO2</i>	06
	c)	<p>In a Deep Convolutional Generative AI Network (DCGAN)</p> <ol style="list-style-type: none"> If the Discriminator (D) classifies the generated image as real with the probability of 0.75, Compute the Generator Loss. If the Discriminator classifies real images and fake images correctly with probabilities of 0.92, and 0.85. Compute the Discriminator Loss. 	<i>CO3</i>	<i>PO3</i>	08
		OR			
10	a)	Explain the step-by-step procedure to be followed while training a GAN model.	<i>CO2</i>	<i>PO2</i>	06
	b)	<p>In WGAN, the Wasserstein loss is given by $L_D = E[D(x)] - E[D(G(z))]$</p> <p>Explain how the gradient penalty term is added to enforce the Lipschitz constraint.</p>	<i>CO1</i>	<i>PO2</i>	06
	c)	<p>Given the probabilities:</p> <p>Conditional GAN (CGAN):</p> <ul style="list-style-type: none"> • Discriminator Loss (L_D) for real images: 0.4. • Generator Loss (L_G) for the generated images: 0.85. <p>Wasserstein GAN (WGAN):</p>	<i>CO3</i>	<i>PO3</i>	08

		<ul style="list-style-type: none"> • Discriminator Loss (L_D) for the real images: 0.22. • Generator Loss (L_G) for the generated images: 0.69. <ol style="list-style-type: none"> i. Interpret the Discriminator Loss and Generator Loss scores of both the models in terms of training behavior for both models. ii. Given that both models have 200 neurons in the first layer, and the generator in both cases has a latent vector of size 200 and a class label vector of size 4, with a total bias of 200. Calculate the number of parameters in the conditional input layer for both CGAN and WGAN. 		
--	--	--	--	--

REAPPEAR EXAMS 2024-25