

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Biotechnology

Course Code: 23BT3PCFME / 22BT3PCFME

Course: Fluid Mechanics

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Explain the significance of Reynolds's number and Froude's number used in fluid flow phenomena.				<i>CO2</i>	<i>PO</i> 1	04
	b)	Derive barometric equation for pressure using the principles of hydrostatic equilibrium for compressible and incompressible fluids.				<i>CO2</i>	<i>PO1</i>	10
	c)	With the help of a suitable plot of shear stress versus velocity gradient, distinguish between Newtonian and various types of non-Newtonian fluids.				<i>CO2</i>	<i>PO1</i>	06
			UNIT - II					
2	a)	Derive Bernoulli's Equation for frictionless fluid.				<i>CO2</i>	<i>PO1</i>	10
	b)	Oil with specific gravity at 0.8 flows through a tapered pipeline whose diameter changes from 310mm at section 1 to 620mm at section 2. The pressure at section 1 and 2 are observed to be 1 bar and 0.65 bar respectively. The discharge through the pipe line is 300 L/s and the difference in elevation between two section is 4 m. Determine, (a) Loss of head and (b) Analyze the results and determine the direction of flow.				<i>CO3</i>	<i>PO2</i>	10
			OR					
3	a)	A 25cm diameter pipe carries oil of specific gravity 0.9 at a velocity of 3m/s. At another section the diameter is 20cm. Find the velocity at this section and also the mass flow rate of oil.				<i>CO3</i>	<i>PO2</i>	06
	b)	Derive Hagen Poiseulle equation for laminar flow through a circular pipe.				<i>CO2</i>	<i>PO1</i>	10
	c)	Define stream line and stream tube with respect to fluid flow phenomena.				<i>CO1</i>	-	04
			UNIT - III					
4	a)	Deduce the flow equation for a venturimeter.				<i>CO2</i>	<i>PO1</i>	10
	b)	Explain the constructional details and working of an orifice meter with a neat labeled sketch.				<i>CO2</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
5	a)	Explain the construction and working principal of a rotameter with a suitable diagram.	<i>CO2</i>	<i>PO1</i>	10
	b)	Draw and analyze the characteristic curves of a centrifugal pump.	<i>CO2</i>	<i>PO1</i>	10
UNIT - IV					
6	a)	Explain the process of batch sedimentation with a neat sketch. Distinguish between sedimentation and filtration process.	<i>CO2</i>	<i>PO1</i>	10
	b)	Describe the working of a leaf filter with a neat illustration.	<i>CO2</i>	<i>PO1</i>	10
UNIT - V					
7	a)	Explain the types of agitators and different flow patterns with a neat sketch.	<i>CO2</i>	<i>PO1</i>	10
	b)	Describe the working of a ribbon blender with a neat labeled diagram.	<i>CO2</i>	<i>PO1</i>	10
