

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 23BT3PCFME/22BT3PCFME

Max Marks: 100

Course: Fluid Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the factors to be considered while selecting the repeating variables in Buckingham Π -method of dimensional analysis.			<i>CO2</i>	<i>PO</i> <i>1</i>	05
		b)	Classify the types of fluids with examples and plots.			<i>CO2</i>	<i>PO1</i>	10
		c)	Explain the significance of any two dimensionless numbers used in fluid flow phenomena.			<i>CO2</i>	<i>PO1</i>	05
			OR					
	2	a)	Deduce barometric equation for isothermal condition using the principles of hydrostatic equilibrium.			<i>CO2</i>	<i>PO1</i>	12
		b)	Explain the formation of a boundary layer with a neat sketch.			<i>CO2</i>	<i>PO1</i>	08
			UNIT - II					
	3	a)	Derive Bernoulli's equation for frictionless fluid.			<i>CO2</i>	<i>PO1</i>	12
		b)	A non-uniform part of pipeline 5m long is laid at the slope of $2 \text{ in } 5$. The pressure gauges each fitted at the upper and lower ends read 20 N/cm^2 and 12.5 N/cm^2 respectively. If the diameters at the upper and lower ends are 15cm and 10cm respectively, determine the quantity of water flowing per second.			<i>CO 3</i>	<i>PO 2</i>	08
			OR					
	4	a)	Deduce Hagen Poiseulle equation for laminar flow of fluids through a circular pipe.			<i>CO2</i>	<i>PO1</i>	10
		b)	Derive Ergun's equation. Mention the assumptions made.			<i>CO2</i>	<i>PO1</i>	10

UNIT - III					
5	a)	Distinguish between variable head and variable area meter.	CO2	PO1	06
	b)	Describe the constructional details and working of an orifice meter with a neat diagram.	CO2	PO1	10
	c)	Write the flow equation for a venturi meter and explain each term.	CO2	PO1	04
OR					
6	a)	Describe the construction and working principal of a rotameter with the help of a neat labeled diagram. State its advantages and disadvantages.	CO2	PO1	10
	b)	Explain the characteristic curves of a centrifugal pump.	CO2	PO1	10
UNIT - IV					
7	a)	Distinguish between the various types of sedimentation.	CO2	PO1	10
	b)	Classify the process of filtration and explain the significance of Kozeney –Carman equation for filtration.	CO2	PO1	10
OR					
8	a)	Explain the working of a Leaf filter with a neat sketch.	CO2	PO1	10
	b)	Explain the types of Fluidization with suitable examples.	CO2	PO1	10
UNIT - V					
9	a)	Explain the types of agitators and different flow patterns with a neat sketch.	CO2	PO1	10
	b)	Describe the construction and working of Banbury mixer with a suitable diagram.	CO2	PO1	10
OR					
10	a)	Describe the working of a ribbon blender with a suitable diagram. List its advantages and disadvantages.	CO2	PO1	10
	b)	Elaborate on the significance of power number on power consumption in mixing operation.	CO2	PO1	10
