

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 19BT3DCPPC

Max Marks: 100

Course: Process of Principles and Calculations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Psychometric chart is allowed.

UNIT - I

1	a) Define normality, molarity, and molality with equations.	06
	b) A gas mixture has a composition of 25% carbon dioxide, 25% carbon monoxide, 10% oxygen, and 40% nitrogen, on mole basis. Express the composition of mixture on weight basis.	06
	c) A stock solution concentration is 25 N. Calculate the volume of this solution to be added to prepare the following list of solutions.	04
	i. 500 mL of 0.2 N	
	ii. 125 mL 1 N	
	iii. 250 mL 5 N	
	iv. 100 mL 20 N	
	d) Calculate the molality and molarity of a solution when 5 mL of 100% H_2SO_4 was added to a 100 mL-standard volumetric flask and then the volume is made up to 100 mL using distilled water. Given data: density of 100% H_2SO_4 is 1.20 g/cc.	04

UNIT - II

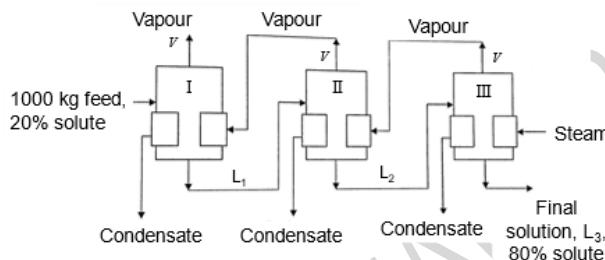
2	a) State and explain the Amagat's law and Dalton's law.	05
	b) Differentiate between absolute humidity, molal absolute humidity, and relative humidity.	05
	c) A mixture of gases is analyzed and found to have the following composition by weight. CO_2 : 12.0%, CO : 6.0%, CH_4 : 27.3%, H_2 : 9.9%, and N_2 : 44.8%. Calculate the average molecular weight of the gas mixture.	10

OR

3	a) State and explain the Henry's law and Raoult's law. Write their applications.	05
	b) Prove that mole % = pressure % for ideal gas.	05
	c) In a vessel at 101.325 kPa and 300 K, the % relative humidity of water vapor in the air is 25. If the partial pressure of water vapor when the air is saturated with vapor at 300 K is 3.6 kN/m ² . Calculate a) The partial pressure of water b) The absolute humidity of air c) The percentage humidity d) The humid volume	10

UNIT - III

4	a) Write the general material balance equation with flow diagram for i. Distillation ii. Absorption iii. Crystallization	10
---	--	----


Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

iv. Extraction
 v. Drying

b) A binary mixture consists of 35% benzene and 65% toluene, which is continuously fed to the distillation column at a rate of 1000 kg/h. The distillate flow rate was 10% of the feed flow rate. The distillate (top product) contains 85 % benzene. Draw neat block diagram of distillation and calculate quantity and compositions of the residue stream.

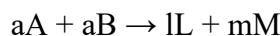
OR

5 a) A triple effect evaporator (as shown in the below Figure) is used to concentrate 1000 kg of aqueous solution from a concentration of 20% solute to 80% solute. Assuming an equal amount of vaporization in each effect, calculate the composition and weight of the solution entering the second and third effects.

b) 2000 kg of wet solids containing 70% solids by weight are fed to a tray dryer, where it is dried by hot air. The product finally obtained is found to contain 1% moisture by weight. Calculate the following.

(i) Amount of water removed from the wet solids in kg.
 (ii) Amount of product obtained after drying in kg.

UNIT - IV


6 a) Explain the following terms with the examples: 10

- Limiting reactant
- Excess reactant
- Conversion
- Yield
- Selectivity

b) A combustion reactor is fed with 50 kmol/h of butane and 2500 kmol/h of air. Calculate the percentage excess oxygen and the composition of gases leaving the combustion reactor. Assume complete combustion. 10

UNIT – V

7 a) Derive a relationship between temperature and heat of reaction for the following reaction. 10

Given, specific heat as, $C_P = \alpha + \beta T + \gamma T^2$.

b) Production of single cell proteins from hexadecane is given by the following equation. If the respiratory quotient (RQ) is 0.4, determine the stoichiometric coefficients.

c) Differentiate between the standard heat of formation and standard heat of combustion. 04
