

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Biotechnology

Course Code: 19BT3DCUO1

Course: UNIT OPERATIONS-1

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	List the factors to be considered while selecting the repeating variables in Buckingham's Π -method of dimensional analysis.	CO 1	-	4		
		b)	Derive barometric equation for pressure for isothermal condition using the principles of hydrostatic equilibrium for compressible and incompressible fluids.	CO 2	PO 1	10		
		c)	Draw and analyze the boundary layer separation in fluid flow across solids with a neat sketch.	CO 3	PO 2	06		
		UNIT - II						
	2	a)	Water is flowing through a pipe of diameters 300mm & 200mm at the bottom and upper end respectively. The intensity of pressure at bottom end is 24.525N/cm^2 and the pressure at the upper end is 9.81N/cm^2 . Compute the difference in elevation head if the rate of flow through the pipe is 40 L/sec.	CO 3	PO 2	10		
		b)	Derive Bernoulli's equation without friction using Newton's second law of motion.	CO 2	PO 1	10		
			UNIT - III					
	3	a)	Explain the constructional details and working of a rotameter with a suitable diagram.	CO 2	PO 1	08		
		b)	Derive the flow equation for a venturimeter.	CO 2	PO 1	12		
			OR					
	4	a)	Draw and analyze the characteristic curves of a centrifugal pump. Elaborate on cavitation and NPSH.	CO 2	PO 1	12		
		b)	Distinguish between i) Variable head and variable area meter ii) Orifice and Venturimeter	CO 2	PO 1	08		
			UNIT - IV					
	5	a)	Describe the laws governing size reduction.	CO 2	PO 1	10		
		b)	Explain the construction and working of a cyclone separator.	CO 2	PO 1	10		

UNIT - V					
6	a)	Distinguish between the various types of sedimentation.	<i>CO 2</i>	<i>PO 1</i>	06
	b)	Describe the working of a leaf filter with a neat sketch.	<i>CO 2</i>	<i>PO 1</i>	08
	c)	Discuss the types of fluidization.	<i>CO 2</i>	<i>PO 1</i>	06
OR					
7	a)	Derive equation for constant pressure filtration.	<i>CO 2</i>	<i>PO 1</i>	10
	b)	Explain the construction and working principle of double arm kneader with a neat labeled diagram.	<i>CO 2</i>	<i>PO 1</i>	10

B.M.S.C.E. - ODD SEM 2023-24