

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: Biotechnology

Course Code: 22BT4PCCMB

Course: Cell and molecular Biology

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Elaborate the roles of endoplasmic reticulum and ribosomes in protein synthesis?		CO 1		10
	b)	Why is higher order chromosomal structure expected in eukaryotes but not in prokaryotes? Discuss.		CO 1		10
OR						
2	a)	Distinguish the roles of helicases and SSB proteins in DNA replication.		CO 1		10
	b)	What is the reverse transcriptase and what is its importance in the management of HIV infection?		CO 4	PO 6	10
			UNIT - II			
3	a)	DNA damage plays a central role in many biological processes linked to cancer. Explain		CO 4	PO 6	10
	b)	What is the difference between heteroduplex and Holliday junction? Illustrate how gene conversion can occur by replication through the heteroduplex region		CO 3	PO 1	10
			UNIT - III			
4	a)	Bring out the significance of exons, introns, and splicing for mRNAs. Taking a disease condition explain.		CO 4	PO 6	10
	b)	What are SnRNPs? Signify their role in protein synthesis.		CO 3	PO 1	10
OR						
5	a)	What are transcription factors? Discuss them for three different RNA polymerases in eukaryotes.		CO 2	PO 1	08
	b)	Why do you think that most promoter regions are A-T rich? Analyse.		CO 2	PO 1	06
	c)	Discuss the role of sigma factor and Rho factor in prokaryotic transcription. Explain the termination process in transcription		CO 2	PO 1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
6	a)	List out the inhibitors of translation. Illustrate the structure and function of eukaryotic ribosome	<i>CO 1</i>		10
	b)	How do Post-translational modifications affect protein folding? With an example explain.	<i>CO 4</i>	<i>PO 6</i>	10
UNIT-V					
7	a)	Comment on lac Operon in <i>Ecoli</i> . Discuss how it controls the activity of genes which produce enzymes necessary for the catabolism of lactose	<i>CO 1</i>		8
	b)	Of what biological significance is the phenomenon of catabolic repression?	<i>CO 1</i>		6
	c)	Even after a gene has been transcribed, gene expression can still be regulated at various stages. What are they?	<i>CO 2</i>	<i>PO 1</i>	6
