

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 23BT4PCHMT / 22BT4PCHMT

Max Marks: 100

Course: Heat and Mass Transfer

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive the equation for Log mean temperature difference for countercurrent flow in a heat exchanger.		CO 2	PO1	10
		b)	A furnace is constructed with 230 mm thick of fire brick, 115 mm of insulating brick and then 230 mm of building brick. The inside temperature of the furnace is 1213 K and the outside temperature is 318 K. The thermal conductivities of fire brick, insulating brick and building brick are 6.047, 0.581 and 2.33 W/m K. Estimate the heat lost per unit area and the temperature at the interfaces.		CO 3	PO2	10
			OR				
	2	a)	Calculate the inside heat transfer coefficient for fluid flowing at a rate of 300 cm ³ /s through a 20mm inside diameter tube of heat exchanger. Data: Viscosity of flowing fluid = 0.8 Ns/m ² Density of flowing fluid = 1.1 g/cm ³ Specific heat of fluid = 1.26 kJ/ Kg K Thermal conductivity of fluid = 0.384 W/m K Viscosity at wall temperature = 1 N s/ m ² Length of heat exchanger = 5 m		CO 3	PO2	10
		b)	Explain the construction and working principle of double pipe heat exchanger with a neat diagram.		CO 2	PO1	10
			UNIT - II				
	3	a)	Describe the construction and working principle of horizontal tube evaporator. State its advantages and disadvantages.		CO 2	PO1	10
		b)	Dry steam at 373 K condenses on the outside surface of a horizontal pipe of 25mm O.D. The pipe surface is maintained at 357 K by circulating water through it. Determine mean heat		CO 3	PO2	10

		transfer coefficient, heat transfer per unit length of pipe and condensate rate per unit length of pipe. Properties of condensate at the film temperature of 350 K are: $\rho = 974 \text{ kg/m}^3$, $\mu = 306 \times 10^{-6} \text{ kg/m.s}$, $k = 0.668 \text{ W/m.K}$, $\lambda = 2225 \text{ kJ/kg}$, Assume that condensate film is laminar.			
		OR			
4	a)	Explain with suitable diagrams, the working principle of forward feed and backward feed arrangement of multiple effect evaporator.	CO 2	PO1	10
	b)	<p>A solution containing 5% solids is to be concentrated to a level of 40% solids. Steam is available at a pressure of 0.2 MPa and saturation temperature of 393 K. Feed rate to the evaporator is 25000 kg/h. The evaporator is working at reduced pressure such that boiling point is 323 K. The overall heat transfer coefficient is 3.2 kW/m²K. Estimate the steam economy and heat transfer surface area for:</p> <p>(i) Feed introduced at 293K (ii) Feed introduced at 308K</p> <p>Compare and interpret the results.</p>	CO 3	PO2	10
		UNIT - III			
5	a)	In an oxygen-nitrogen gas mixture at 101.3 kPa and 298 K, the concentrations of oxygen at two planes 2mm apart are 20% and 10% by volume respectively. Calculate the flux of diffusion of oxygen for the cases where (i) nitrogen is non-diffusing (ii) there is equimolar counter diffusion of the two given gases. Diffusivity of oxygen in nitrogen is $1.81 \times 10^{-5} \text{ m}^2/\text{s}$.	CO 3	PO2	10
	b)	Explicate the two-film theory for mass transfer with suitable diagram. Derive equation for overall mass transfer coefficient and explain controlling film concept.	CO 2	PO1	10
		OR			
6	a)	Hydrochloric acid (A) at 283 K diffuses through a thin film of water (B) 4 mm thick. The Concentration of A at location 1 on one boundary of the film is 12 weight % (density $\rho_1 = 1060.7 \text{ kg/m}^3$) and on other boundary, at location 2, is 4 weight % (density $\rho_2 = 1020.15 \text{ kg/m}^3$). The diffusivity of HCL in water is $2.5 \times 10^{-9} \text{ m}^2/\text{s}$. Calculate the flux of diffusion of A assuming water to be non-diffusing.	CO 3	PO2	10
	b)	Derive equation for flux for steady state equimolar counterdiffusion of gas A and gas B.	CO 2	PO1	10

		UNIT - IV								
7	a)	Illustrate the working principle of simple distillation with a neat diagram. Derive Rayleigh's equation.					CO 2	POI	10	
	b)	A mixture of benzene and toluene containing 40 mole% of benzene is to be separated in a fractionating column to give a distillate containing 90 mole% of benzene and a bottom product containing 10 mole% of benzene. Feed is liquid at its bubble point. Using average relative volatility of 2.4, find out the number of theoretical stages required at total reflux.					CO 3	PO2	10	
		OR								
8	a)	100 kmol of a mixture containing 50 mole% n-heptane (more volatile) and 50 mole% n-octane is subjected to a differential distillation at atmospheric pressure, with 60 mole% of liquid distilled. Compute the composition of the composited distillate and the residue using Rayleigh equation. Equilibrium data:					CO 3	PO2	10	
	b)	How is supercritical fluid extraction different from aqueous two-phase extraction? Describe protein purification by different types of ATPE.					CO 2	POI	10	
		UNIT - V								
9	a)	Discuss the process of nucleation and crystal growth in crystallization. What are the methods by which super-saturation can be obtained?					CO 2	POI	10	
	b)	Differentiate Physical adsorption from Chemical adsorption. Describe in detail adsorption isotherms.					CO 1		10	
		OR								
10	a)	Sketch and explicate the various stages in a drying rate curve.					CO 2	POI	05	
	b)	Explain the principle for ion exchange process with a suitable application.					CO 2	POI	05	
	c)	Discuss the working of drum dryer with a neat diagram.					CO 2	POI	10	
