

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester:IV

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 23BT4ESPET / 22BT4ESPET

Max Marks: 100

Course: Process Engineering Thermodynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Enumerate extensive and intensive properties? State whether the following properties are intensive or extensive: (a) volume, (b) density, (c) specific volume, (d) heat capacity,	<i>CO 1</i>	<i>PO 1</i>	06
	b)	Prove that $dH = Cp dT$.	<i>CO 1</i>	<i>PO 1</i>	04
	c)	Derive the equation for first law thermodynamics for an open system.	<i>CO 1</i>	<i>PO 2</i>	10
OR					
2	a)	Arrive at an equation for Carnot efficiency of reversible heat engine. Write the propositions of Carnot principle.	<i>CO 1</i>	<i>PO 2</i>	10
	b)	Two Carnot engines A and B are connected in series between the two thermal reservoirs at 1000 K and 200 K respectively. Engine A receives 500 kJ of heat from the higher temperature reservoir and rejects heat to the engine B. Engine B takes in heat rejected by engine A and rejects heat to the low temperature reservoir. If the engines A and B deliver equal work, draw a neat schematic for the flow of energy and determine <ul style="list-style-type: none"> i. the amount of heat taken in by the engine B ii. efficiencies of engine A and B 	<i>CO 1</i>	<i>PO 2</i>	10
UNIT - II					
3	a)	Prove that all gases when compared at the same reduced temperature and the reduced pressure, have approximately the same compressibility factor and all deviate from the ideal behavior to the same extent.	<i>CO 2</i>	<i>PO 2</i>	06
	b)	With PV diagram, explain in detail about the PVT behavior of pure fluids.	<i>CO 2</i>	<i>PO 2</i>	08
	c)	Calculate the pressure developed by 1 mol of gaseous ammonia contained in a vessel of $0.6 \times 10^{-3} \text{ m}^3$ capacity at a constant temperature of 473 K by the following methods: <ul style="list-style-type: none"> i. Using ideal gas equation 	<i>CO 2</i>	<i>PO 2</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		ii. Using Vander Waals equation given that $a=0.4233\text{Nm}^4/\text{mol}^2$ $b=3.73 \times 10^{-5}\text{m}^3/\text{mol}$			
		OR			
4	a)	Prove that $PV^\gamma = \text{constant}$ for adiabatic process	CO2	PO ₂	10
	b)	Explain vander Waals equation of state in detail. Differentiate between ideal gas and real gas.	CO2	PO ₂	10
		UNIT - III			
5	a)	Using fundamental property relations, arrive at Maxwell's equations.	CO 1	PO 1	10
	b)	Prove that	CO 1	PO 1	10
		$dS = \frac{C_V}{T} dT - \frac{(\partial V/\partial T)_P}{(\partial V/\partial P)_T} dV$			
		OR			
6	a)	Derive the equation representing the effect of temperature and pressure on chemical potential.	CO2	PO2	10
	b)	A 30% by mole methanol-water solution is to be prepared. How many cubic metres of pure methanol (molar volume, $40.727 \times 10^{-6}\text{ m}^3/\text{mol}$) and pure water (molar volume, $18.068 \times 10^{-6}\text{ m}^3/\text{mol}$) are to be mixed to prepare 2 m ³ of the desired solution? The partial molar volumes of methanol and water in a 30 percent solution are $38.632 \times 10^{-6}\text{ m}^3/\text{mol}$ and $17.765 \times 10^{-6}\text{ m}^3/\text{mol}$, respectively.	CO2	PO2	10
		UNIT - IV			
7	a)	What do you mean by positive and negative deviation from ideality? "A solution formed exhibiting positive deviation from ideality is accompanied by absorption of heat and a solution formed exhibiting negative deviation from ideal behavior is accompanied by an evolution of heat". Justify.	CO3	PO2	10
	b)	Show that the following equations provide the criteria of equilibrium under certain constraints. $dU_{S,V} = 0$, $dS_{H,P} = 0$, and $dH_{S,P} = 0$	CO3	PO2	10
		OR			
8	a)	Show that for equilibrium between phases of pure substance, the fugacities in both phases should be equal.	CO1	PO ₁	10
	b)	The azeotrope of the ethanol-benzene system has composition of 44.8 % (mol) ethanol with boiling point of 341.4K and 101.3 kPa. At this temperature the vapor pressure of benzene is 68.9 kPa and the vapor pressure of ethanol is 67.4 kPa. Calculate the activity coefficients in a solution containing 10% alcohol.	CO3	PO ₂	10
		UNIT - V			
9	a)	Derive the equation representing the effect of temperature on equilibrium constant.	CO3	PO 2	08

	b)	<p>The standard Gibbs energy change for the reaction.</p> $\text{C}_2\text{H}_4 + \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_5\text{OH}$ <p>At 25°C is -9500 J/mol. The heat of reaction at 25°C is -50000 J/mol. Estimate the equilibrium constant for the reaction at 400°C.</p>	CO3	PO2	08
	c)	Explain the heat evolution in aerobic processes.	CO4	PO2	04
OR					
10	a)	Illustrate criteria for chemical reaction equilibrium with neat graph.	CO1	PO1	06
	b)	<p>Calculate the equilibrium constant at 298K of the reaction</p> $\text{N}_2\text{O}_4(\text{g}) \rightarrow \text{NO}_2(\text{g})$ <p>Given that the standard free energies of formation at 298K are 97540 J/mol for N₂O₄ and 51310 J/mol for NO₂.</p>	CO4	PO2	06
	c)	Explain oxygen consumption and heat evolution in aerobic cultures.	CO3	PO1	08

B.M.S.C.E. - ODD SEM 2024-25