

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Biotechnology

Course Code: 23BT4ESPET

Course: Process Engineering Thermodynamics

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	State the second law of thermodynamics. Derive an equation for the first law of thermodynamics for the flow process with a neat sketch.	CO1	PO1	10
	b)	What is the principle of the Carnot cycle? Derive the equation for Carnot efficiency.	CO1	PO1	10
OR					
2	a)	Explain the zeroth and third law of thermodynamics with examples.	CO1	PO1	04
	b)	What are intensive and extensive properties? Segregate the following based on the type of properties. Temperature, internal energy, specific heat, density, pressure, heat capacity, volume, mass, and molar volume.	CO1	PO1	06
	c)	Hydrocarbon oil will be cooled from 425 K to 340 K at 5000 kg/h in a parallel flow heat exchanger. Cooling water at 10,000 kg/h at 295 K is available. The mean specific heats of the oil and water are 2.5 kJ/kg K and 4.2 kJ/kg K, respectively. (i) Determine the total change in entropy. Is the process reversible? (ii) How much work would be available if a reversible Carnot engine is to be operated, receiving the heat from the oil and rejecting the heat to the surroundings at 295 K?	CO1	PO2	10
UNIT - II					
3	a)	Elucidate the importance of PT and PV diagrams in understanding the PVT behavior of pure fluids.	CO1	PO1	10
	b)	Prove that $C_p - C_v = R$.	CO1	PO1	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>The molar volume of carbon dioxide is $0.381 \text{ m}^3/\text{kmol}$ at 313 K. Calculate the pressure in bar using:</p> <ol style="list-style-type: none"> ideal gas equation van der Waals equation. <p>Assume the van der Waals constants: $a = 0.365 \text{ Nm}^4/\text{mol}^2$ and $b = 4.28 \times 10^{-5} \text{ m}^3/\text{mol}$. Comment on the values obtained by both equations.</p>	CO2	PO2	06																					
		UNIT - III																								
4	a)	What is fugacity? How is the fugacity of pure gases determined?	CO2	PO1	06																					
	b)	Calculate the fugacity of liquid water at 303 K and 10 bar if the saturation pressure at 303 K is 4.241 kPa and the specific volume of liquid water at 303 K is $1.004 \times 10^{-3} \text{ m}^3/\text{kg}$.	CO2	PO2	06																					
	c)	Derive the Clausius Clapeyron equation by stating suitable assumptions. Emphasize on its applications.	CO2	PO2	08																					
		OR																								
5	a)	Derive the Maxwell equations using fundamental property relations.	CO2	PO2	08																					
	b)	Explain the term fugacity coefficient. Deduce the relationship between the fugacity and fugacity coefficient.	CO2	PO1	06																					
	c)	Elucidate the chemical potential and its importance in bioprocess applications.	CO2	PO1	06																					
		UNIT - IV																								
6	a)	<p>Mixtures of <i>n</i>-Heptane (A) and <i>n</i>-Octane (B) are expected to behave ideally. The total pressure over the system is 101.3 kPa. Using the vapour pressure data given below,</p> <ol style="list-style-type: none"> Construct the boiling point diagram Construct the equilibrium diagram Deduce an equation for the equilibrium diagram using an arithmetic average α value <table border="1"> <thead> <tr> <th>$T, \text{ K}$</th> <th>371.4</th> <th>378</th> <th>383</th> <th>388</th> <th>393</th> <th>398.6</th> </tr> </thead> <tbody> <tr> <th>$P_A, \text{ kPa}$</th> <td>101.3</td> <td>125.3</td> <td>140.0</td> <td>160.0</td> <td>179.9</td> <td>205.3</td> </tr> <tr> <th>$P_B, \text{ kPa}$</th> <td>44.4</td> <td>55.6</td> <td>64.5</td> <td>74.8</td> <td>86.6</td> <td>101.3</td> </tr> </tbody> </table>	$T, \text{ K}$	371.4	378	383	388	393	398.6	$P_A, \text{ kPa}$	101.3	125.3	140.0	160.0	179.9	205.3	$P_B, \text{ kPa}$	44.4	55.6	64.5	74.8	86.6	101.3	CO3	PO2	10
$T, \text{ K}$	371.4	378	383	388	393	398.6																				
$P_A, \text{ kPa}$	101.3	125.3	140.0	160.0	179.9	205.3																				
$P_B, \text{ kPa}$	44.4	55.6	64.5	74.8	86.6	101.3																				
	b)	Discuss the criteria of phase equilibria.	CO3	PO2	06																					
	c)	Briefly explain the VLE in non-ideal solutions.	CO3	PO2	04																					
		UNIT - V																								
7	a)	Derive an expression between temperature and equilibrium constant.	CO3	PO2	08																					

	b)	<p><i>n</i>-Butane is isomerized to <i>i</i>-butane by the action of catalyst at moderate temperatures. It is found that the equilibrium is attained at the following compositions.</p> <table border="1"> <thead> <tr> <th>Temperature (K)</th><th>Mol % of <i>n</i>-butane</th></tr> </thead> <tbody> <tr> <td>317</td><td>31</td></tr> <tr> <td>391</td><td>43</td></tr> </tbody> </table> <p>Assuming that activities are equal to the mole fractions, calculate the standard free energy of the reaction at 317 K and 391 K and the average value of heat of reaction over this temperature range.</p>	Temperature (K)	Mol % of <i>n</i> -butane	317	31	391	43	<i>CO3</i>	<i>PO2</i>	08
Temperature (K)	Mol % of <i>n</i> -butane										
317	31										
391	43										
	c)	Explain the thermodynamics of denaturation of proteins.	<i>CO4</i>	<i>PO2</i>	04						
