

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Biotechnology

Course Code: 23BT4ESPET / 22BT4ESPET

Course: Process Engineering Thermodynamics

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate the concepts of intensive and extensive properties in thermodynamics. Provide examples for each. Additionally, classify the following properties as either intensive or extensive: pressure, internal energy, temperature, and volume.	CO 1	PO2	10
	b)	State the first law of thermodynamics. Illustrate how it applies to a closed system undergoing a cyclic process. Compute the work done by a gas if it absorbs 1000 J of heat and its internal energy decreases by 200 J.	CO1	PO2	10
OR					
2	a)	Explain the concept of entropy and its significance in the second law of thermodynamics. Calculate the change in entropy when 500 J of heat is added reversibly to a system at a constant temperature of 300 K.	CO1	PO1	10
	b)	Illustrate the Carnot cycle with the PV diagram emphasize on the importance of Carnot principle in second law of thermodynamics.	CO1	PO2	06
	c)	Calculate the efficiency of a Carnot engine operating between the hot reservoir at 500 K and a cold reservoir at 300 K.	CO1	PO2	04
UNIT - II					
3	a)	How do the processes involving the ideal gas law differ for constant volume, constant pressure, constant temperature and adiabatic processes?	CO2	PO2	06
	b)	A 1.5 mol sample of an ideal gas undergoes a polytropic process where $PV^{1.3}=\text{constant}$. Initially, the gas is at a pressure of 5 atm and a volume of 2.5 L. The final volume of the gas is 4 L. Evaluate the final pressure and the work done by the gas during this process.	CO2	PO2	04
	c)	Calculate the volume occupied by one mole of oxygen gas at 300 K and 100 bar using <ol style="list-style-type: none"> i. the ideal gas law and ii. the vanderwaals equation taking $a=0.1378 \text{ N m}^4/\text{mol}^2$ and $b=3.18 \times 10^{-5} \text{ m}^3/\text{mol}$. 	CO 2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		UNIT – III																						
4	a)	Using fundamental property relations, derive Maxwell's equations.						CO2	PO2	10														
	b)	A 30% by mole methanol-water solution is to be prepared. How many cubic metres of pure methanol (molar volume, $40.727 \times 10^{-6} \text{ m}^3/\text{mol}$) and pure water (molar volume, $18.068 \times 10^{-6} \text{ m}^3/\text{mol}$) are to be mixed to prepare 2 m ³ of the desired solution? The partial molar volumes of methanol and water in a 30 percent solution are $38.632 \times 10^{-6} \text{ m}^3/\text{mol}$ and $17.765 \times 10^{-6} \text{ m}^3/\text{mol}$, respectively.						CO2	PO2	10														
OR																								
5	a)	Calculate the fugacity of nitrogen at 800 bar from the following data at 273 K.						CO2	PO2	10														
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>P bar</td><td>50</td><td>100</td><td>200</td><td>400</td><td>800</td><td>1000</td></tr> <tr> <td>PV/RT</td><td>0.9846</td><td>0.9846</td><td>1.0365</td><td>1.2557</td><td>1.7959</td><td>2.0641</td></tr> </table>							P bar	50	100	200	400	800	1000	PV/RT	0.9846	0.9846	1.0365	1.2557	1.7959	2.0641	10	
P bar	50	100	200	400	800	1000																		
PV/RT	0.9846	0.9846	1.0365	1.2557	1.7959	2.0641																		
	b)	Derive Gibb's Duhem equation using partial molar properties. Write its applications.						CO2	PO2	10														
UNIT - IV																								
6	a)	Derive the equations representing criteria for phase equilibrium.						CO 3	PO2	08														
	b)	A binary solution of components A and B exhibits non-ideal behavior. At a given temperature, the vapor pressures of the pure components are $P_A^0=0.8 \text{ atm}$ and $P_B^0=0.5 \text{ atm}$. The mole fraction of component A in the liquid phase is $x_A=0.4$ and the total pressure of the system is 0.65 atm. Given the total pressure and the vapor pressures of the pure components, calculate the activity coefficients (γ_A and γ_B) for components A and B.						CO 3	PO2	12														
UNIT - V																								
7	a)	Explain the thermodynamics of coupled reaction and denaturation of proteins.						CO4	PO2	07														
	b)	The standard heat of formation and standard free energy of formation of ammonia at 298 K are -46,000 J/mol and 16,500 J/mol respectively. Compute the equilibrium constant for the reaction. $\text{N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3$ at 500 K assuming that heat of reaction is constant.						CO3	PO2	07														
	c)	Illustrate the criteria of reaction equilibrium with the help of G Vs ϵ plot.						CO3	PO2	06														
