

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## January / February 2025 Semester End Main Examinations

**Programme: B.E.**

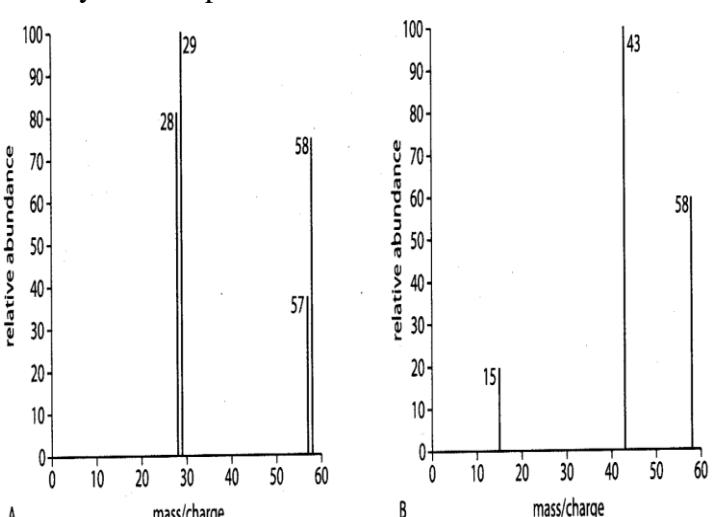
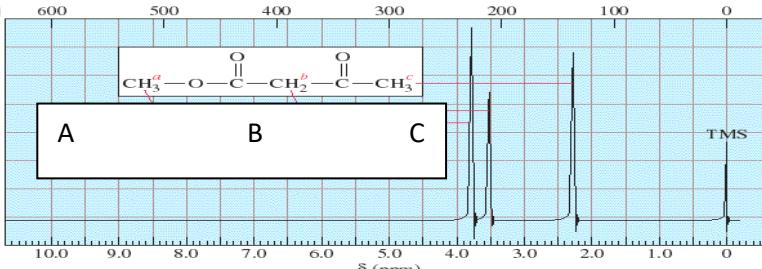
**Semester: V**

**Branch: Biotechnology**

**Duration: 3 hrs.**

**Course Code: 23BT5PCBAT / 22BT5PCBAT**

**Max Marks: 100**



**Course: Bioanalytical Techniques**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO  | PO        | Marks |
|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|-------|
| 1         | a)   | Two analytes A and B were separated on a 25 cm long column. The observed retention times were 7 min 20 s and 8 min 20 s, respectively. The base peak width for analyte B was 10 s. When a reference compound, which was completely excluded from the stationary phase under the same elution conditions, was studied, its retention time was 1 min 20 s. What was the resolution of the two analytes?                                                                                                                                                                                                                                                                                                                                                                        |     |           | 8     |
|           | b)   | Provide a simple form of the Van Demeter equation, and define the terms involved in the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO1 | PO<br>1,5 | 5     |
|           | c)   | A mixture containing hemoglobin, 65,000 Daltons; myoglobin, 17,000 daltons and myosin, 180,000 daltons needs to be separated. Suggest the most suitable chromatographic technique for their separation. Explain the principle and working of the technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO1 | PO<br>1,5 | 7     |
| <b>OR</b> |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |           |       |
| 2         | a)   | Malodors are commonly detected in molded polymers used for general purposes such as household items, domestic appliances, plastic furniture, wheel and bumper covers in the automotive industry, and laboratory equipment. Research indicates that such strong odors are associated with the emission of harmful substances and volatile organic compounds (VOCs). Above a certain level of tolerance these volatile compounds have long-term effects detrimental to health after frequent exposure. A researcher seeks to investigate some of the compounds present in a molded polymer used by a Company C in their finished product and suggest ways to minimize or eliminate the smell without compromising other physical and chemical properties of the final polymer. | CO1 | PO<br>1,5 | 8     |
|           | (i)  | Identify the most suitable technique that can be used. Justify your choice. What is the principle of this technique?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |           |       |
|           | (ii) | Give a schematic of its instrumentation and list the components involved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |           |       |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |    |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|----|
|                   | b) | 6-phosphogluconate dehydrogenase has a pI of 6. Explain why the buffer used for a chromatography on DEAE-cellulose must have a pH greater than 6 but less than 9 in order to ensure the enzyme is efficiently bound to the column.                                                                                                                                                                              | CO2 | PO 1,5        | 4  |
|                   | c) | A chromatography column with a length of 10.3 cm and an inner diameter of 4.61 mm is packed with a stationary phase that occupies 61.0% of the volume. If the volume flow rate is 1.13 mL/min, find the linear flow rate in cm/min.                                                                                                                                                                             | CO1 | PO 1,5        | 8  |
| <b>UNIT - II</b>  |    |                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |    |
| 3                 | a) | What is the role of APS and TEMED in SDS PAGE protocol?                                                                                                                                                                                                                                                                                                                                                         | CO2 | PO 1,5        | 4  |
|                   | b) | A mixture of five isoenzymes having a molecular weight range from 40kDa to 60 kDa need to be separated out .The pI value of this mixture of these isoenzymes ranges from 6.02 to 6.07. Identify the most suitable technique for effective separation of individual components elucidating the principle and protocol to be followed.                                                                            | CO2 | PO 1,5        | 8  |
|                   | c) | PFGE is a powerful tool for characterizing various strains at the DNA level, obtaining relevant information on genome size and constructing the physical and genetic map of the chromosome of bacteria. List the types of PFGE and illustrate their working.                                                                                                                                                    | CO2 | PO 1,5        | 8  |
| <b>OR</b>         |    |                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |    |
| 4                 | a) | The relative electrophoretic motilities of a 30 kDa protein and a 92 kDa protein used as standards on a SDS-PAGE are 0.80 and 0.41respectively. <ol style="list-style-type: none"> <li>Calculate the apparent mass of a protein having a mobility of 0.62 on this gel. (Mobility is inversely proportional to log. Mass).</li> <li>List and elucidate the factors that affect an electrophoresis run</li> </ol> | CO2 | PO 1,5        | 10 |
|                   | b) | Identify the electrophoretic techniques that can be used for the following cases. Justify your answers <ol style="list-style-type: none"> <li>In vitro detection of protein–DNA binding</li> <li>Resolving DNA</li> <li>Zymogram analysis</li> <li>Determine disulphide linkages in a protein</li> <li>single-strand conformation polymorphism (SSCP) analysis</li> </ol>                                       | CO2 | PO 1,5        | 10 |
| <b>UNIT - III</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |    |
| 5                 | a) | Identify the technique which is based upon the differences in the sedimentation rate of biological particles of different size and density. Explain its principle and working with a schematic.                                                                                                                                                                                                                 | CO3 | PO 1,5,1<br>2 | 7  |
|                   | b) | DSC can elucidate the factors that contribute to the folding and stability of native biomolecules, including hydrophobic interactions, hydrogen bonding, conformational entropy, and the physical environment. Justify the statement                                                                                                                                                                            | CO3 | PO 1,5,1<br>2 | 6  |

|   |    |                                                                                                                                                                                                                                                                                                                                                                                |     |                  |   |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|---|
|   | c) | <p>The mass spectra of two compounds are shown below. One is propanone (<math>\text{CH}_3\text{COCH}_3</math>) and the other is propanal (<math>\text{CH}_3\text{CH}_2\text{CHO}</math>).</p> <p>(i) Identify the ions in the major peaks<br/> (ii). Identify the compound in each case</p>  | CO3 | PO<br>1,5,1<br>2 | 7 |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                      |     |                  |   |
| 6 | a) | <p>A biochemist is interested in studying the topological images of a protein -DNA interactions.</p> <p>i) Identify a suitable technique that can be used<br/> ii) Explain the principle and working of this technique</p>                                                                                                                                                     | CO3 | PO<br>1,5,12     | 6 |
|   | b) | <p>A plant extract was run through GC and needs to be further analyzed by MS to get information on its structural components.</p> <p>i) Select the ionization technique and the analyzer that is most suited for running the GC MS of this sample.<br/> ii) Illustrate the principle and working of the selected technique.</p>                                                | CO3 | PO<br>1,5,12     | 8 |
|   | c) | Differentiate between fluorescence and phosphorescence.                                                                                                                                                                                                                                                                                                                        | CO3 | PO<br>1,5,12     | 6 |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                                               |     |                  |   |
| 7 | a) | <p>From the NMR spectrum given., identify the following with reasons</p>  <p>i) how many different kinds of protons are present.<br/> ii) how shielded or deshielded the proton is.<br/> iii) the number of protons of that type.<br/> iv) the number of protons on adjacent atoms.</p>    | CO4 | PO<br>1,5,1<br>2 | 4 |

|                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |           |
|-----------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|-----------|
|                 | b) | <p>This graph shows a typical x-ray absorption spectrum, with absorption plotted vs. the energy of the incoming photon. Identify the following regions of the spectra:</p> <p>i) Edge, ii) XANES, iii)NEXAFS, iv) EXAFS v)White line and vi) <math>E_o</math></p>                                                                                                                                                                                                                                     | CO4  | PO<br>1,5,1<br>2 | <b>6</b>  |
|                 | c) | <p>An aliquot of a solution containing a light absorbing substance at a concentration of 5g/ml was placed in a 2cm light path cuvette. The cuvette was placed in a spectrophotometer and a beam of light of wavelength <math>\lambda</math> was passed through the cuvette containing the solution. A transmission value of 80% was recorded.</p> <p>i) Find the absorbance of the solution.<br/>ii) The molar extinction co-efficient if the molecular mass of the substance is known to be 410.</p> | CO4  | PO<br>1,5,12     | <b>5</b>  |
|                 | d) | <p>A researcher has purified a recombinant protein and wants to check whether it has adopted a folded structure or not optically? Identify the technique that he should follow. Justify your choice.</p>                                                                                                                                                                                                                                                                                              | CO4  | PO<br>1,5,12     | <b>5</b>  |
| <b>OR</b>       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |           |
| 8               | a) | Differentiate between ENDOR and ELDOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO4  | PO<br>1,5,12     | <b>4</b>  |
|                 | b) | Differentiate between Infrared spectroscopy and Raman spectroscopy.                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO4  | PO<br>1,5,12     | <b>6</b>  |
|                 | c) | What is chemical shift? How is it measured? What are the factors that affect the chemical shift?                                                                                                                                                                                                                                                                                                                                                                                                      | CO4  | PO<br>1,5,12     | <b>10</b> |
| <b>UNIT - V</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |           |
| 9               | a) | The half-life of $^{32}\text{P}$ is 14.2 days. How long would it take a solution containing 42 000 d.p.m. to decay to 500 d.p.m.?                                                                                                                                                                                                                                                                                                                                                                     | CO3  | PO<br>1,5,12     | <b>4</b>  |
|                 | b) | What is Scintillation proximity assay? Illustrate its principle and working. Add a note on its advantages.                                                                                                                                                                                                                                                                                                                                                                                            | CO4  | PO<br>1,5,12     | <b>10</b> |
|                 | c) | List any six rules that should be followed while handling radioisotopes.                                                                                                                                                                                                                                                                                                                                                                                                                              | CO3  | PO<br>1,5,12     | <b>6</b>  |
| <b>OR</b>       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |           |
| 10              | a) | What types of radiation can be detected by an ionization counter? Justify.                                                                                                                                                                                                                                                                                                                                                                                                                            | CO3  | PO<br>1,5,12     | <b>4</b>  |
|                 | b) | Differentiate between solid and liquid scintillation counting.                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO4  | PO<br>1,5,12     | <b>6</b>  |
|                 | c) | List the merits and demerits of any three commonly used radioisotopes.                                                                                                                                                                                                                                                                                                                                                                                                                                | CO 3 | PO<br>1,5,12     | <b>6</b>  |
|                 | d) | A 1 mCi source of $^{125}\text{I}$ gives a dose of $10 \text{ mSv h}^{-1}$ at 1 cm. What will be the dose rate at 5 cm?                                                                                                                                                                                                                                                                                                                                                                               | CO 3 | PO<br>1,5,12     | <b>4</b>  |

\*\*\*\*\*