

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

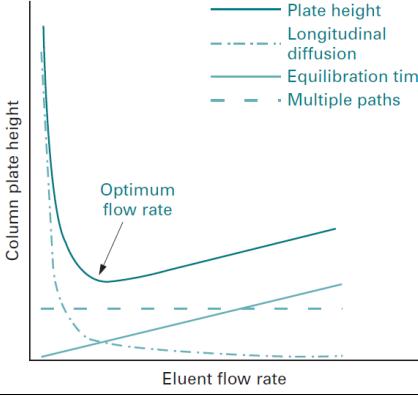
Programme: B.E.

Semester: V

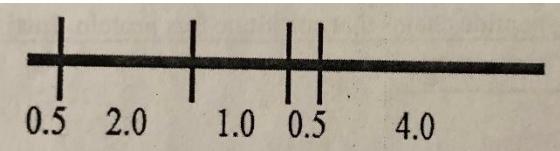
Branch: Biotechnology

Duration: 3 hrs.

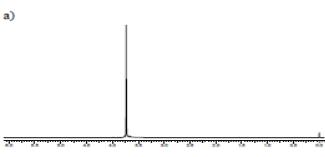
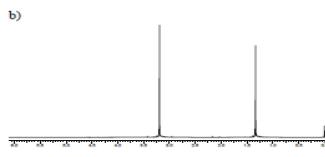
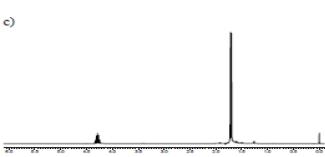
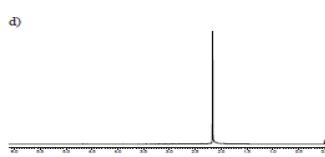
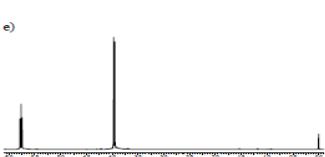
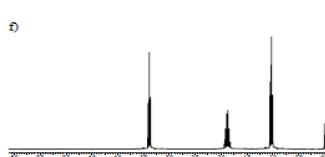
Course Code: 23BT5PCBAT/22BT5PCBAT

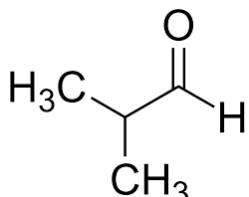

Max Marks: 100

Course: Bioanalytical Techniques

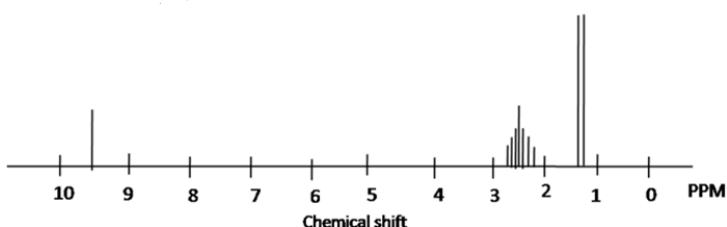

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																										
1	a)	<p>Two analytes A and B were separated on a 25 cm long column. The observed retention times were 7 min 20 s and 8 min 20 s, respectively. The base peak width for analyte B was 10 s. When a reference compound, which was completely excluded from the stationary phase under the same elution conditions, was studied, its retention time was 1 min 20 s.</p> <p>i. What was the resolution of the two analytes?</p> <p>ii. What is the length of the column required to double the resolution if there is an analytical need to increase the separation?</p>	CO1	PO 1,5	10																										
	b)	<p>Reproduced below are the R_f values of some amino acids in two different solvents. The chromatography was carried out using Whatman No.1 paper and the mode was ascending chromatography.</p> <table border="1"> <thead> <tr> <th rowspan="2">Amino acid</th> <th colspan="2">R_f Values x 100</th> </tr> <tr> <th>n-Butanol-Acetic Acid-Water (4:1:5)</th> <th>n-Butanol-Pyridine-Water (1:1:1)</th> </tr> </thead> <tbody> <tr> <td>Aspartic acid</td> <td>23</td> <td>20</td> </tr> <tr> <td>Alanine</td> <td>30</td> <td>37</td> </tr> <tr> <td>Glycine</td> <td>23</td> <td>29</td> </tr> <tr> <td>Histidine</td> <td>11</td> <td>24</td> </tr> <tr> <td>Leucine</td> <td>70</td> <td>60</td> </tr> <tr> <td>Lysine</td> <td>12</td> <td>13</td> </tr> <tr> <td>Tyrosine</td> <td>45</td> <td>60</td> </tr> </tbody> </table> <p>i. If the above stated seven amino acids were given to you in a mixture, will you be able to separate them satisfactorily using n-butanol-acetic acid-water (4:1:5) as the solvent system? Give reasons to your answers.</p> <p>ii. Can you resolve the mixture satisfactorily using the n-butanol-pyridine-water (1:1:1) as the solvent system? Give reasons to your answers.</p> <p>iii. Using only these solvent systems how can you separate the mixture of these seven amino acids satisfactorily?</p>	Amino acid	R _f Values x 100		n-Butanol-Acetic Acid-Water (4:1:5)	n-Butanol-Pyridine-Water (1:1:1)	Aspartic acid	23	20	Alanine	30	37	Glycine	23	29	Histidine	11	24	Leucine	70	60	Lysine	12	13	Tyrosine	45	60	CO1	PO 1,5	10
Amino acid	R _f Values x 100																														
	n-Butanol-Acetic Acid-Water (4:1:5)	n-Butanol-Pyridine-Water (1:1:1)																													
Aspartic acid	23	20																													
Alanine	30	37																													
Glycine	23	29																													
Histidine	11	24																													
Leucine	70	60																													
Lysine	12	13																													
Tyrosine	45	60																													







Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

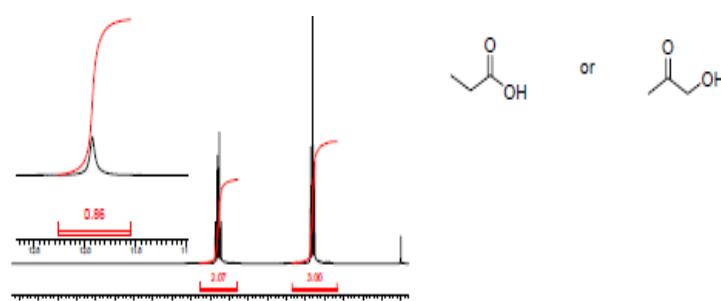

OR																										
2	a)	<p>The relative molecular mass (M_r) of a protein was investigated by exclusion chromatography using a Sephadex G-25 column and using aldolase, catalase, ferritin, thyroglobulin and blue dextran as standard. The following elution data were obtained.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Protein</th><th style="text-align: left;">Molecular Weight (M_r)</th><th style="text-align: left;">Elution Volume in cm^3 (V_e)</th></tr> </thead> <tbody> <tr> <td>Aldolase</td><td>158000</td><td>22.5</td></tr> <tr> <td>Catalase</td><td>210000</td><td>21.4</td></tr> <tr> <td>Ferritin</td><td>444000</td><td>18.2</td></tr> <tr> <td>Thyroglobulin</td><td>669000</td><td>16.4</td></tr> <tr> <td>Blue Dextran</td><td>2000000</td><td>13.6</td></tr> <tr> <td>Unknown</td><td>?</td><td>19.5</td></tr> </tbody> </table> <p>i. What is the relative molecular weight (M_r) of the unknown protein? ii. Why does the elution volume decrease with increase in the molecular weight of proteins? iii. If the same mixture is resolved on a column, which has a different diameter and different length, will the elution volume of all components remain the same? Give your reasons.</p>	Protein	Molecular Weight (M_r)	Elution Volume in cm^3 (V_e)	Aldolase	158000	22.5	Catalase	210000	21.4	Ferritin	444000	18.2	Thyroglobulin	669000	16.4	Blue Dextran	2000000	13.6	Unknown	?	19.5	<i>CO1</i>	<i>PO 1,5</i>	10
Protein	Molecular Weight (M_r)	Elution Volume in cm^3 (V_e)																								
Aldolase	158000	22.5																								
Catalase	210000	21.4																								
Ferritin	444000	18.2																								
Thyroglobulin	669000	16.4																								
Blue Dextran	2000000	13.6																								
Unknown	?	19.5																								
	b)	<p>Critically examine those factors which are influenced by the flow rate of the eluent through the column taking into consideration van Deemter plot</p>	<i>CO1</i>	<i>PO 1,5</i>	05																					
	c)	<p>i. How will you separate the following mixture of amino acids using ion exchange chromatography?</p> <ol style="list-style-type: none"> Alanine ($\text{pI} = 6.01$) and Glutamic acid ($\text{pI} = 3.22$) Glutamic acid ($\text{pI} = 3.22$) and Aspartic acid ($\text{pI} = 2.77$) 	<i>CO1</i>	<i>PO 1,5</i>	05																					

		UNIT - II																																							
3	a)	<p>SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is a discontinuous electrophoretic system developed by Ulrich K. Laemmli which is commonly used as a method to separate proteins with molecular masses between 5 and 250 kDa.</p> <p>i. X-ray crystallographic studies of a given protein have conclusively proved that the protein consists of four peptide chains in association with each other. Yet SDS-PAGE of the protein gives just one band. How many explanations can you provide to justify the above observation?</p> <p>ii. The following table shows the distance moved in an SDS-PAGE by a series of marker proteins of known relative molecular mass (M_r). A newly purified protein (X) run on the same gel showed a single band that had moved a distance of 45 mm. What was the M_r of protein X?</p> <table border="1"> <thead> <tr> <th>Protein</th> <th>M_r</th> <th>Distance moved (mm)</th> </tr> </thead> <tbody> <tr> <td>Transferrin</td> <td>78000</td> <td>6.0</td> </tr> <tr> <td>Bovine serum albumin</td> <td>66000</td> <td>12.5</td> </tr> <tr> <td>Ovalbumin</td> <td>45000</td> <td>32.0</td> </tr> <tr> <td>Glyceraldehyde-3-phosphate dehydrogenase</td> <td>36000</td> <td>38.0</td> </tr> <tr> <td>Carbonic anhydrase</td> <td>29000</td> <td>50.0</td> </tr> <tr> <td>Trypsinogen</td> <td>24000</td> <td>54.0</td> </tr> <tr> <td>Soyabean trypsin inhibitor</td> <td>20100</td> <td>61.0</td> </tr> <tr> <td>β-Lactoglobulin</td> <td>18400</td> <td>69.0</td> </tr> <tr> <td>Myoglobin</td> <td>17800</td> <td>69.0</td> </tr> <tr> <td>Lysozyme</td> <td>14300</td> <td>79.0</td> </tr> <tr> <td>Cytochrome c</td> <td>12400</td> <td>86.5</td> </tr> </tbody> </table>	Protein	M_r	Distance moved (mm)	Transferrin	78000	6.0	Bovine serum albumin	66000	12.5	Ovalbumin	45000	32.0	Glyceraldehyde-3-phosphate dehydrogenase	36000	38.0	Carbonic anhydrase	29000	50.0	Trypsinogen	24000	54.0	Soyabean trypsin inhibitor	20100	61.0	β -Lactoglobulin	18400	69.0	Myoglobin	17800	69.0	Lysozyme	14300	79.0	Cytochrome c	12400	86.5	CO2	PO 1,5	10
Protein	M_r	Distance moved (mm)																																							
Transferrin	78000	6.0																																							
Bovine serum albumin	66000	12.5																																							
Ovalbumin	45000	32.0																																							
Glyceraldehyde-3-phosphate dehydrogenase	36000	38.0																																							
Carbonic anhydrase	29000	50.0																																							
Trypsinogen	24000	54.0																																							
Soyabean trypsin inhibitor	20100	61.0																																							
β -Lactoglobulin	18400	69.0																																							
Myoglobin	17800	69.0																																							
Lysozyme	14300	79.0																																							
Cytochrome c	12400	86.5																																							
	b)	The bands are greatly sharpened by an ingenious technique known as discontinuous pH or disc electrophoresis, which requires a two-gel system and several different buffers. What is the mechanism of disc electrophoresis which produces high resolution and good band definition?	CO2	PO 1,5	05																																				

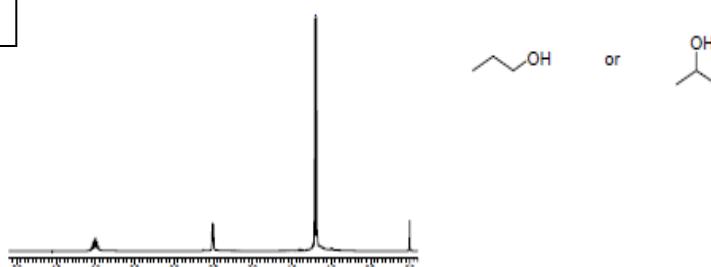

	c)	<p>The following image represents a map of a piece of DNA, where each vertical line represents a recognition site for restriction site for restriction enzyme <i>BamHI</i>. If this DNA was digested completely by <i>BamHI</i>, represent the agarose gel results that you expect to see.</p>	CO 2	PO 1,5	05
		OR			
4	a)	<p>Conventional agarose gel electrophoresis can't separate linear double stranded DNA molecules that have a radius of gyration which is larger than the pore size of the gel. These large linear duplex DNA molecules migrate through agarose gels at the same rate irrespective of their size.</p> <p>Identify the quick and reliable procedure for the separation of large (>30 kb) DNA molecules. Compare the different variants of this procedure.</p>	CO2	PO 1,5	10
	b)	<p>Substantiate the statement “Rocket Immuno-Electrophoresis is used as a rapid way to quantitate antigen in complex samples”.</p>	CO2	PO 1,5	05
	c)	<p>What will be the relative electrophoretic mobilities of Alanine (pI = 6.02), Arginine (pI = 10.76), Glutamic acid (pI = 3.22), Serine (pI = 5.68), and Tryptophan (pI = 5.88) at pH 5.68?</p>	CO2	PO 1,5	05
		UNIT - III			
5	a)	<p>Ultracentrifuge is a sophisticated and advanced centrifuge that operates at an extremely high speed and separates smaller molecules that cannot be separated from the traditional centrifuges.</p> <ol style="list-style-type: none"> How do you use the ultracentrifugation for the determination of a molecular mass a particle based on sedimentation velocity? In a dilute buffer solution at 20 °C, rabbit muscle aldolase has a frictional coefficient of 8.74×10^{-8} g s⁻¹, a sedimentation coefficient of 7.35 s, and a partial specific volume of 0.742 cm³ g⁻¹. Calculate the molecular mass of aldolase assuming the density of the solution to be 0.998 g cm⁻³. 	CO 1	PO 1,5	10

	b)	Calcium signaling is a common mechanism, since the ion, once it enters the cytoplasm, exerts allosteric regulatory effects on many enzymes and proteins. How can intracellular calcium be monitored with the use of spectroscopic technique?	CO3	PO 1,5,1 2	5
	c)	A biochemist is interested in determining molecular weight, dimension, and transport properties of a macromolecule using scattering of light. Identify and explain the principle of suitable spectroscopic techniques that can be used for molecular weight determination and give the equation for the calculation of molecular weight.	CO4	PO 1,5,1 2	5
		OR			
6	a)	<p>MALDI-TOF mass spectrometry is a versatile analytical technique to detect and characterize mixtures of organic molecules. In microbiology, it is used as a rapid, accurate, and cost-effective method for identifying microorganisms.</p> <ol style="list-style-type: none"> Explain the principle and methodology of MALDI-TOF MS Is MALDI-TOF better for gram-negative or gram-positive bacteria? Why is the thorough cleaning of the testing plate important? 	CO4	PO 1,5,1 2	10
	b)	What is fluorescence recovery after photobleaching? How do you use this technique to study diffusion and interactions of macromolecules?	CO4	PO 1,5,1 2	05
	c)	Examine the principle of a physical technique used to determine the thermodynamic parameters of interactions in solution.	CO4	PO 1,5,1 2	05
		UNIT - IV			
7	a)	You have purified a recombinant protein and wonder whether it adopts a folded structure. How might you address this problem?	CO4	PO 1,5,1 2	05
	b)	A researcher would like to select a suitable technique for the structural analysis of a sample. He has information that his sample contains unpaired electrons. Identify a suitable technique that can be used and explain its principle	CO3	PO 1,5,1 2	05

	c)	<p>The spectra below are of acetone, 1,2-dichloroethane, 1,1,2-trichloroethane, 2,2-dimethoxypropane, 1-bromopropane and 2-bromopropane. Assign them to corresponding spectra (Any five).</p> <p>a) </p> <p>b) </p> <p>c) </p> <p>d) </p> <p>e) </p> <p>f) </p>	CO3	PO 1,5,1 2	10
		OR			
8	a)	<p>What is the difference between Raman spectroscopy and Infrared spectroscopy? Write any two of their applications.</p>	CO4	PO 1,5,1 2	05
	b)	<p>XAES is a group of techniques that interrogate materials for a variety of chemical/structural information. What is the principle of XAES? Add a note of its applications.</p>	CO4	PO 1,5,1 2	05
	c)	<p>i. What is chemical shift? How do you calculate chemical shift?</p> <p>ii. In ^1H NMR spectrum, each signal represents one kind or set of proton(s) in a molecule. In certain molecule, multiple signals (multiplet) are observed rather than a singlet. The structure and the corresponding ^1H NMR spectrum have been given below. Assign the structure to the given NMR spectrum.</p>	CO 3	PO 1,5,1 2	10



iii. For each ^1H NMR spectrum given below, choose between



the alternative compounds. Give your reasons.

a

b

UNIT - V

9 a) Examine the solid scintillation counting methods for the measurement of radioactivity. Apprise the advantages of scintillation counting.

CO 4 *PO*
1,5,1
2

b) The half-life of ^{32}P is 14.2 days. How long would it take a solution containing 42,000 d.p.m. to decay to 500 d.p.m.?

CO4 *PO*
1,5,1
2

c) What are the rules to be followed while handling radioisotopes?

CO4 *PO*
1,5,1
2

OR

10 a) Demonstrate the liquid scintillation counting methods for the measurement of radioactivity. Apprise the disadvantages of scintillation counting.

CO4 *PO*
1,5,1
2

		b)	Examine the types of radioactive decay.	CO4	PO 1,5,1 2	05
		c)	Compare and contrast merits and demerits of radioisotopes used in biological sciences.	CO4	PO 1,5,1 2	05

REAPPEAR EXAMS 2024-25