

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 23BT5PCBIN / 22BT5PCBIN

Max Marks: 100

Course: Bioinformatics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the features of Pfam.	CO1	-	6
		b)	Illustrate the features of PDB format with a suitable example.	CO1	-	6
		c)	Elucidate the features of KEGG database of biological systems.	CO1	-	8
OR						
	2	a)	With a suitable illustration, discuss the features of Genbank flatfile format.	CO1	-	6
		b)	Give an account on tools and resources available at NCBI.	CO1	-	8
		c)	Explicate the features of protein structure databases.	CO1	-	6
UNIT - II						
	3	a)	Perform the global alignment using Needlman wunch algorithm and determine the optimal alignment for the following sequences (scores: Gap:-1,mismatch:-1 and for match:-2) Seq A: GATATCCTCATT Seq B:CGAATCCGTCAA	CO2	PO5	10
		b)	Dot-plots provide a visual representation of sequence similarity. Substantiate the statement with an example.	CO2	PO5	10
OR						
	4	a)	Elaborate the steps involved in FASTA algorithm and comment on its statistical significance.	CO1	-	05
		b)	Construct an alignment using Smith & Waterman algorithm. Evaluate your score to determine the optimal alignment for the following sequences. Sequence 1= ACCTGGACACGCT ,	CO1	-	10

		<p>Sequence 2 = ACACTCCGCATCG</p> <table border="1"> <thead> <tr> <th>Sl no.</th><th>Parameter</th><th>score</th></tr> </thead> <tbody> <tr> <td>1</td><td>Identity</td><td>+4</td></tr> <tr> <td>2</td><td>Mismatch</td><td>-1</td></tr> <tr> <td>3</td><td>Gap creation</td><td>-2</td></tr> </tbody> </table>	Sl no.	Parameter	score	1	Identity	+4	2	Mismatch	-1	3	Gap creation	-2																																								
Sl no.	Parameter	score																																																				
1	Identity	+4																																																				
2	Mismatch	-1																																																				
3	Gap creation	-2																																																				
	c)	Illustrate with an example, steps involved in Multiple sequence alignment using progressive alignment method.	<i>CO1</i>	-	05																																																	
UNIT - III																																																						
5	a)	Construct a phylogenetic tree for the following distances between five taxa and determine the branch lengths using Neighborhood joining method.	<i>CO3</i>	<i>PO2</i>	10																																																	
		<table border="1"> <thead> <tr> <th></th><th>A</th><th>B</th><th>C</th><th>D</th><th>E</th></tr> </thead> <tbody> <tr> <td>A</td><td>-</td><td>2</td><td>7</td><td>4</td><td>7</td></tr> <tr> <td>B</td><td>2</td><td>-</td><td>7</td><td>4</td><td>7</td></tr> <tr> <td>C</td><td>7</td><td>7</td><td>-</td><td>7</td><td>6</td></tr> <tr> <td>D</td><td>4</td><td>4</td><td>7</td><td>-</td><td>7</td></tr> <tr> <td>E</td><td>7</td><td>7</td><td>6</td><td>7</td><td>-</td></tr> </tbody> </table>		A	B	C	D	E	A	-	2	7	4	7	B	2	-	7	4	7	C	7	7	-	7	6	D	4	4	7	-	7	E	7	7	6	7	-																
	A	B	C	D	E																																																	
A	-	2	7	4	7																																																	
B	2	-	7	4	7																																																	
C	7	7	-	7	6																																																	
D	4	4	7	-	7																																																	
E	7	7	6	7	-																																																	
	b)	Discuss the principle and construction of phylogenetic tree by Maximum Parsimony method with a suitable example.	<i>CO1</i>	-	10																																																	
OR																																																						
6	a)	Apply UPGMA method to make a phylogenetic tree for the following distances between six taxa and determine the branch lengths.	<i>CO2</i>	<i>PO5</i>	10																																																	
		<table border="1"> <thead> <tr> <th></th><th>A</th><th>B</th><th>C</th><th>D</th><th>E</th><th>F</th></tr> </thead> <tbody> <tr> <td>A</td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>B</td><td>2</td><td>-</td><td></td><td></td><td></td><td></td></tr> <tr> <td>C</td><td>4</td><td>4</td><td>-</td><td></td><td></td><td></td></tr> <tr> <td>D</td><td>6</td><td>6</td><td>6</td><td>-</td><td></td><td></td></tr> <tr> <td>E</td><td>6</td><td>6</td><td>6</td><td>4</td><td>-</td><td></td></tr> <tr> <td>F</td><td>8</td><td>8</td><td>8</td><td>8</td><td>8</td><td>-</td></tr> </tbody> </table>		A	B	C	D	E	F	A	-						B	2	-					C	4	4	-				D	6	6	6	-			E	6	6	6	4	-		F	8	8	8	8	8	-			
	A	B	C	D	E	F																																																
A	-																																																					
B	2	-																																																				
C	4	4	-																																																			
D	6	6	6	-																																																		
E	6	6	6	4	-																																																	
F	8	8	8	8	8	-																																																
	b)	Construct a Position specific scoring matrix for the following multiple alignment of nucleotide sequences. Determine the probability of a new sequence ACGAAG fit into the matrix?	<i>CO3</i>	<i>PO2</i>	10																																																	
		<table border="1"> <thead> <tr> <th>Position</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th></tr> </thead> <tbody> <tr> <td>Sequence 1</td><td>T</td><td>C</td><td>A</td><td>T</td><td>A</td><td>C</td></tr> <tr> <td>Sequence 2</td><td>A</td><td>G</td><td>G</td><td>C</td><td>G</td><td>G</td></tr> <tr> <td>Sequence 3</td><td>A</td><td>C</td><td>T</td><td>A</td><td>A</td><td>G</td></tr> <tr> <td>Sequence 4</td><td>C</td><td>T</td><td>G</td><td>A</td><td>A</td><td>C</td></tr> <tr> <td>Sequence 5</td><td>T</td><td>C</td><td>G</td><td>A</td><td>T</td><td>G</td></tr> </tbody> </table>	Position	1	2	3	4	5	6	Sequence 1	T	C	A	T	A	C	Sequence 2	A	G	G	C	G	G	Sequence 3	A	C	T	A	A	G	Sequence 4	C	T	G	A	A	C	Sequence 5	T	C	G	A	T	G										
Position	1	2	3	4	5	6																																																
Sequence 1	T	C	A	T	A	C																																																
Sequence 2	A	G	G	C	G	G																																																
Sequence 3	A	C	T	A	A	G																																																
Sequence 4	C	T	G	A	A	C																																																
Sequence 5	T	C	G	A	T	G																																																

		UNIT - IV				
7	a)	Demonstrate the sequence acquisition and analysis by Illumina sequencing.		CO2	PO5	5
	b)	Explicate the various tools for molecular structure visualization.		CO1	-	5
	c)	A 11 kb circular plasmid pRIT455 is digested with three restriction enzymes <i>EcoRI</i> , <i>BamHI</i> and <i>HindIII</i> individually and in combination. The resulting fragment sizes are determined by means of electrophoresis. The results are as follows:		CO3	PO2	10
Draw a restriction map based on these results						
OR						
8	a)	What is a primer? Discuss the factors to be considered for design of primers. Add a note on the computational tools for design of primers.		CO1	-	10
	b)	Demonstrate the sequence acquisition and analysis by Roche 454 sequencing and applications.		CO2	PO5	10
UNIT - V						
9	a)	Discuss the molecular dynamics simulation model with a neat flowchart.		CO1	-	10
	b)	Demonstrate the computational method of protein structure prediction and comment on how to critically assess the quality of structure.		CO1	-	10
OR						
10	a)	With a neat flowchart, discuss the steps involved in Insilco drug discovery.		CO1	-	10
	b)	Explicate the structure activity relationship (SAR) and QSAR with reference to drug discovery.		CO1	-	05
	c)	Explain the role of scoring functions involved in grid calculation and binding energy minimization.		CO1	-	05
