

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 23BT5PEMTE / 22BT5PEMTE

Max Marks: 100

Course: Metabolic Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Describe the Characteristics of Metabolism with examples.	<i>CO1</i>	<i>PO</i>	10
	b)	Define Central metabolism and discuss its importance in cells.	<i>CO1</i>	<i>PO1</i>	6
	c)	Briefly comment on Anabolic reaction with examples.	<i>CO1</i>	<i>PO1</i>	4
OR					
2	a)	Explain the methodology for metabolic characterization related to Proteome and metabolome.	<i>CO1</i>	<i>PO1</i>	10
	b)	Write on Anaplerotic reaction and discuss the role of anaplerosis.	<i>CO1</i>	<i>PO1</i>	5
	c)	Interpret the Stoichiometry of cellular reactions with an example.	<i>CO1</i>	<i>PO1</i>	5
UNIT - II					
3	a)	What are the factors regulating enzyme activity? And discuss in detail with various parameters.	<i>CO1</i>	<i>PO1</i>	10
	b)	Elaborate the ways to regulate the concentration of an enzyme.	<i>CO1</i>	<i>PO1</i>	6
	c)	Define the sensitivity analysis and comment on its applications.	<i>CO1</i>	<i>PO1</i>	4
OR					
4	a)	Explain the role of Biomolecules in cell processes and regulation.	<i>CO2</i>	<i>PO2</i>	10
	b)	Discuss the regulation of metabolic networks with flow diagram.	<i>CO2</i>	<i>PO3</i>	5
	c)	Define Metabolic flux analysis and write on its applications.	<i>CO2</i>	<i>PO3</i>	5
UNIT - III					
5	a)	Elaborate the methodology for metabolic flux analysis with flow chart	<i>CO2</i>	<i>PO2</i>	8
	b)	Discuss the importance of metabolite balancing with an example	<i>CO2</i>	<i>PO2</i>	8
	c)	Comment on Applications of metabolic flux analysis.	<i>CO2</i>	<i>PO2</i>	4

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
6	a)	Illustrate the analysis on metabolic flux by MS and NMR in labelling measurement.	CO2	PO3	10
	b)	Explain the essential cell physiological features of Metabolic flux analysis.	CO2	PO3	5
	c)	Write on the principle of tracer experiments of metabolic flux and interpret on Monitoring with stable isotope tracers.	CO2	PO3	5
UNIT - IV					
7	a)	What are the types of Metabolic Control Analysis? Describe the mechanism of action.	CO3	PO5	10
	b)	Interpret the significance in detail for Protein network analysis related to metabolic control analysis.	CO3	PO5	6
	c)	Describe the Applications of Metabolic Control Analysis.	CO3	PO5	4
OR					
8	a)	Explain how Flux Control Coefficient involved in the change of biomolecule's reaction concentration.	CO3	PO5	10
	b)	Discuss the relation between MCA linear and Branched pathways and comment on its significance.	CO3	PO5	10
UNIT - V					
9	a)	Discuss the principle and importance of metabolic engineering practice.	CO4	PO12	4
	b)	How to create the Isobutanol from Ecoli ? Write the methodology steps for the production.	CO4	PO12	8
	c)	Write on alternative strategy for the production of terpenoids from Engineered E coli.	CO4	PO12	8
OR					
10	a)	Discuss the Efforts to improve the production of a compound of interest in <i>Saccharomyces cerevisiae</i> .	CO4	PO12	10
	b)	Describe the concepts of metabolic engineering and the production of amino acids from corynebacterium.	CO4	PO12	10
