

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Branch: Biotechnology

Course Code: 19BT5DCREN

Course: Reaction Engineering

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 21.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Compare and contrast elementary and nonelementary reactions.	04
	b) Describe temperature dependency of rate constant by transition state theory.	06
	c) A decomposition reaction at 313K is 3 times faster compared to 293K. Estimate activation energy for this decomposition.	04
	d) Derive an integrated rate expression for first order reaction for constant volume system with respect to concentration and fractional conversion.	06

UNIT - II

2	a) Derive performance equation for recycle reactor with the suitable assumptions.	10
	b) Enzyme E catalyses the fermentation of reactant A to product S. Estimate the size of mixed flow reactor required for 95% conversion of reactant A in a feed stream of 25 L/min of reactant A with $C_{A0} = 2$ moles A/L. The kinetics of the fermentation is given by $A \rightarrow S$. $-r_A = 0.10C_A/(1+0.5C_A)$	10

OR

3	a) Derive the performance equation for plug flow reactor in terms of concentration and conversion.	10
	b) A high molecular weight hydrocarbon gas A is fed continuously to a heated high temperature mixed flow reactor where it is thermally cracked into lower molecular weight materials collectively called R, by the stoichiometry approximated by $A \rightarrow 5R$. By changing the feed rate different extents of cracking are obtained as follows:	10

F_{A0} mmol/h	300	1000	3000	5000
C_{Aout} mmol/L	16	30	50	60

The volume of the reactor is $V = 0.1$ L and $C_{A0} = 100$ mmol/L. Find the rate equation to represent the cracking reaction.

UNIT - III

4	a) Stating all assumptions derive the equation for dispersion model in a tubular reactor.	06
---	---	----

b) From the data given below determine i) the nature of input ii) mean residence time in the vessel iii) E values **10**

T (min)	0	5	10	15	20	25	30	35
C,tracer output conc.(mol/L)	0	3	5	5	4	2	1	0

c) List the characteristics of tracer used in experiments to determine non - ideality in flow. **04**

UNIT - IV

5 a) Derive the equation to determine the dilution rate, cell mass concentration and substrate concentration with endogenous metabolism and without endogenous metabolism for cell growth in ideal chemostat. **10**

b) Experimental data from a batch fermentation off an anaerobic bacterium growing on methanol as a substrate hey is given in the following table. **10**

Time (Hours)	X (g/L)	S (g/L)
0	0.4	18.5
2	0.422	18.4
4	0.61	18.1
8	1.96	16.1
10	3.54	13.6
12	6.4	9.2
14	11.2	1.84
16	12.3	0.154
18	12.4	0

Determine the following

- Net specific growth rate
- Yield of biomass with respect to substrate
- Mass doubling time mass

UNIT - V

6 a) With a neat figure illustrate the construction and working principle of airlift bioreactor. State its advantages. **08**

b) Describe the working principle of fluidised bed bioreactors with a neat labelled sketch. **08**

c) Draw and label the typical growth rate curve of a bacterial population. **04**

OR

7 a) Describe the various conditions needed to be adapted for stability of bioreactors. **10**

b) Discuss on the scaleup criteria of the bioreactors how does the dimensional analysis helps in the scaleup of bioreactors? **10**
