

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 23BT5PCREN / 22BT5PCREN

Max Marks: 100

Course: Reaction Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I						CO	PO	Marks												
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive an expression for conversion as a function of time for a reaction $A \rightarrow R$ in a constant volume batch reactor following $-r_A = kC_A^2$						CO2	PO 1	4											
		b)	Distinguish between (i) molecularity and order of reaction (ii) Elementary and non-elementary reaction with examples.						CO2	PO 1	6											
		c)	Calculate the activation energy for the Benzene diazonium chloride to give chlorobenzene and nitrogen using Arrhenius equation from the following data:						CO2	PO1	10											
			<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="padding: 2px;">k(Sec^{-1})</td><td style="padding: 2px;">0.00043</td><td style="padding: 2px;">0.00103</td><td style="padding: 2px;">0.0018</td><td style="padding: 2px;">0.00355</td><td style="padding: 2px;">0.00717</td></tr> <tr> <td style="padding: 2px;">T($^{\circ}\text{C}$)</td><td style="padding: 2px;">313</td><td style="padding: 2px;">319</td><td style="padding: 2px;">323</td><td style="padding: 2px;">328</td><td style="padding: 2px;">333</td></tr> </table>						k(Sec^{-1})	0.00043	0.00103	0.0018	0.00355	0.00717	T($^{\circ}\text{C}$)	313	319	323	328	333		
k(Sec^{-1})	0.00043	0.00103	0.0018	0.00355	0.00717																	
T($^{\circ}\text{C}$)	313	319	323	328	333																	
OR																						
	2	a)	Distinguish between integral and differential method of analysis. Also give the steps for each of these methods.						CO2	PO1	6											
		b)	Show that decomposition of N_2O_5 at 67°C is a first order reaction. Calculate the value of the rate constant.						CO2	PO1	10											
			<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="padding: 2px;">Time (min)</td><td style="padding: 2px;">0</td><td style="padding: 2px;">1</td><td style="padding: 2px;">2</td><td style="padding: 2px;">3</td><td style="padding: 2px;">4</td></tr> <tr> <td style="padding: 2px;">$C_{\text{N}_2\text{O}_5}$ (mol/L)</td><td style="padding: 2px;">0.16</td><td style="padding: 2px;">0.13</td><td style="padding: 2px;">0.08</td><td style="padding: 2px;">0.056</td><td style="padding: 2px;">0.04</td></tr> </table>						Time (min)	0	1	2	3	4	$C_{\text{N}_2\text{O}_5}$ (mol/L)	0.16	0.13	0.08	0.056	0.04		
Time (min)	0	1	2	3	4																	
$C_{\text{N}_2\text{O}_5}$ (mol/L)	0.16	0.13	0.08	0.056	0.04																	
UNIT - II																						
	3	a)	An aqueous feed of A and B (400 lit/min, 100mmolA /lit, 200mmol B/lit) is to be converted to product in a mixed flow reactor. The kinetics of the reaction is represented by $A + B \rightarrow R$, $-r_A = 200C_A C_B$						3	2	6											

		mol/L.min. Find the volume of reactor needed for 99% conversion of A to product.																					
	b)	Compare batch reactor and continuous flow reactor with neat diagrams. Discuss in terms of cost, size comparison and application.	CO2	PO1	7																		
	c)	Derive performance equation for plug flow reactor. Give graphical representation of equation.	CO2	PO1	7																		
OR																							
4	a)	The kinetics of the aqueous phase decomposition of A is investigated in two mixed flow reactors in series, the second having twice the volume of the first reactor. At steady state with a feed concentration of 1 mol A/L and mean residence time of 96 sec in the first reactor, the concentration in the first reactor is 0.5 mol A/L and the second is 0.25 mol A/L. Find the kinetic equation of decomposition.	3	2	8																		
	b)	Draw and give description for a recycle reactor.	CO2	PO1	6																		
	c)	Compare mixed flow reactor with plug flow reactor with suitable diagrams and list their characteristics.	CO2	PO1	6																		
UNIT - III																							
5	a)	The concentration reading in the following table represent a continuous response to a pulse input into a closed vessel. Rate equation is given by $-r_A = kC_A$ where $k=0.307 \text{ min}^{-1}$. Plot E curve. Determine conversion in a real reactor.	3	2	12																		
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>t (min)</td><td>0</td><td>5</td><td>10</td><td>15</td><td>20</td><td>25</td><td>30</td><td>35</td></tr> <tr> <td>C (g/lit)</td><td>0</td><td>3</td><td>5</td><td>5</td><td>4</td><td>2</td><td>1</td><td>0</td></tr> </table>	t (min)	0	5	10	15	20	25	30	35	C (g/lit)	0	3	5	5	4	2	1	0			
t (min)	0	5	10	15	20	25	30	35															
C (g/lit)	0	3	5	5	4	2	1	0															
	b)	Discuss conditions for non-ideality in flow reactors with neat illustrations.	CO2	PO1	8																		
OR																							
6	a)	List characteristics of tracer used. Explain RTD studies with pulse input and step input.	CO2	PO1	8																		
	b)	A reactor with a number of dividing baffles is to be used to run the reaction $A \rightarrow R$ with $-r_A = 0.05 C_A \text{ mol/L.min}$ A pulse tracer test gives the following output curve <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Time, min</td><td>0</td><td>10</td><td>20</td><td>30</td><td>40</td><td>50</td><td>60</td><td>70</td></tr> <tr> <td>C (g/L)</td><td>35</td><td>38</td><td>40</td><td>40</td><td>39</td><td>37</td><td>36</td><td>35</td></tr> </table> Plot E curve and determine mean residence time.	Time, min	0	10	20	30	40	50	60	70	C (g/L)	35	38	40	40	39	37	36	35	3	2	12
Time, min	0	10	20	30	40	50	60	70															
C (g/L)	35	38	40	40	39	37	36	35															

UNIT - IV																																
7	a)	Briefly explain phases of cell growth in a batch bioreactor with the help of a suitable diagram.	CO2	PO1	8																											
	b)	Explain different models for growth inhibitors.	CO2	PO1	6																											
	c)	The specific growth rate for inhibited growth in a chemostat is given by $\mu = \frac{\mu_{max}S}{k_s + S + I k_s / k_I}$ where $S_0 = 10\text{ g/l}$, $k_s = 1 \text{ g/l}$ $I = 0.05 \text{ g/l}$ $Y_{X/S} = 0.1 \text{ g cells/g sub}$ $X_0 = 0$ $K_I = 0.01 \text{ g/l}$ $\mu_m = 0.5 \text{ h}^{-1}$ (i) Determine X and S as a function of D when I = 0 With inhibitor added to a chemostat, determine X and S as a function of D	3	2	6																											
OR																																
8	a)	Explain the working of a chemostat with a neat labeled diagram. Derive the performance equation for cell concentration and substrate concentration in the absence of endogenous metabolism.	CO2	PO1	10																											
	b)	Ethanol formation from glucose is accomplished in a batch culture of <i>Saccharomyces cerevisiae</i> and the following data were obtained <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Time (h)</th><th>Biomass (X) g/L</th><th>Glucose (S) g/L</th></tr> </thead> <tbody> <tr><td>0</td><td>0.5</td><td>100</td></tr> <tr><td>2</td><td>1</td><td>95</td></tr> <tr><td>5</td><td>2.1</td><td>85</td></tr> <tr><td>10</td><td>4.8</td><td>58</td></tr> <tr><td>15</td><td>7.7</td><td>30</td></tr> <tr><td>20</td><td>9.6</td><td>12</td></tr> <tr><td>25</td><td>10.4</td><td>5</td></tr> <tr><td>30</td><td>10.7</td><td>2</td></tr> </tbody> </table> Calculate (i) Maximum growth rate (ii) yield on substrate (iii) Mass doubling time	Time (h)	Biomass (X) g/L	Glucose (S) g/L	0	0.5	100	2	1	95	5	2.1	85	10	4.8	58	15	7.7	30	20	9.6	12	25	10.4	5	30	10.7	2	CO3	PO2	10
Time (h)	Biomass (X) g/L	Glucose (S) g/L																														
0	0.5	100																														
2	1	95																														
5	2.1	85																														
10	4.8	58																														
15	7.7	30																														
20	9.6	12																														
25	10.4	5																														
30	10.7	2																														
UNIT - V																																
9	a)	Sketch and explain different bioreactor configurations used commonly in fermentation.	CO2	PO1	10																											
	b)	Explain different scale up methods used in bioprocesses.	CO2	PO1	10																											
OR																																
10	a)	Explain construction and operation of a typical air-lift fermenter with a neat labeled diagram.	CO2	PO1	10																											
	b)	Discuss various scale-up criteria based on stirred tank bioreactors.	CO2	PO1	10																											