

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: BIOTECHNOLOGY

Duration: 3 hrs.

Course Code: 23BT5PCREN / 22BT5PCREN

Max Marks: 100

Course: Reaction Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I					CO	PO	Marks											
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	A reaction of the form $A \rightarrow B$ is monitored by the formation of product. The following concentrations of reactants as a function of time were measured:	<table border="1"> <tr> <td>Time (t), min</td> <td>0</td> <td>10</td> <td>20</td> <td>30</td> <td>40</td> </tr> <tr> <td>Concentration (C), g/m³</td> <td>0.860</td> <td>0.740</td> <td>0.635</td> <td>0.546</td> <td>0.405</td> </tr> </table>	Time (t), min	0	10	20	30	40	Concentration (C), g/m ³	0.860	0.740	0.635	0.546	0.405	CO2	PO1	10	
	Time (t), min	0	10	20	30	40														
	Concentration (C), g/m ³	0.860	0.740	0.635	0.546	0.405														
			b)	Show that the reaction is first order, calculate the rate constant, k and the half-life, $t_{1/2}$.																
			OR																	
		2	a)	Determine the overall order of the following irreversible reaction $2A + 2B \rightarrow C + 2D$ From the following constant-volume data obtained by using equimolar quantities of reactants A and B. Take T = 296K	<table border="1"> <tr> <td>Half-life (seconds)</td> <td>265</td> <td>186</td> <td>115</td> <td>104</td> <td>67</td> </tr> <tr> <td>Total pressure (mmHg)</td> <td>200</td> <td>240</td> <td>280</td> <td>320</td> <td>360</td> </tr> </table>	Half-life (seconds)	265	186	115	104	67	Total pressure (mmHg)	200	240	280	320	360	CO 3	2	10
	Half-life (seconds)	265	186	115	104	67														
	Total pressure (mmHg)	200	240	280	320	360														
			b)	The rate of reaction at 40°C is three times the rate at 20°C. Determine the activation energy.																
			c)	Distinguish between integral method and differential method of analysis.																

		UNIT - II																										
3	a)	Derive the design equation for ideal plug flow reactor for constant volume systems with suitable diagram. State the conditions.						CO2	PO1	10																		
	b)	A specific enzyme E acts as a catalyst in the fermentation of substrate A. At a given enzyme concentration in the aqueous feed stream of 25 L/min. Estimate and compare the volume of plug flow reactor and mixed flow reactor required to achieve 95% conversion of reactant A with initial concentration $C_{A0} = 2 \text{ mol/L}$. The kinetics and stoichiometry of the fermentation reaction are given by $A \rightarrow R$, $-r_A = 0.1 C_A / (1 + 0.5 C_A)$						CO 3	PO 2	10																		
		OR																										
4	a)	It is planned to operate a batch reactor for converting A into R. This is a liquid phase reaction with stoichiometry $A \rightarrow R$. How long it must react in each batch for concentration to drop from $C_{A0} = 1.3 \text{ mol/L}$ to $C_{Af} = 0.3 \text{ mol/L}$? The data of rate of reaction v/s concentration of A is given below:						CO 3	PO 2	10																		
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>C_A , mol/L</td><td>0.1</td><td>0.2</td><td>0.3</td><td>1.0</td><td>1.3</td><td>2</td></tr> <tr> <td>$-r_A$, mol/L min</td><td>0.1</td><td>0.3</td><td>0.5</td><td>0.05</td><td>0.045</td><td>0.042</td></tr> </table>							C_A , mol/L	0.1	0.2	0.3	1.0	1.3	2	$-r_A$, mol/L min	0.1	0.3	0.5	0.05	0.045	0.042						
C_A , mol/L	0.1	0.2	0.3	1.0	1.3	2																						
$-r_A$, mol/L min	0.1	0.3	0.5	0.05	0.045	0.042																						
	b)	Derive performance equation for recycle reactor for variable volume system.						CO2	PO1	10																		
		UNIT - III																										
5	a)	The effluent concentration is measured as a function of time for a pulse input into a closed vessel. The results are tabulated below:						CO 3	PO 2	10																		
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Time(t), min</td><td>0</td><td>5</td><td>10</td><td>15</td><td>20</td><td>25</td><td>30</td><td>35</td></tr> <tr> <td>Concentration (C) , g/L</td><td>0</td><td>3</td><td>5</td><td>5</td><td>4</td><td>2</td><td>1</td><td>0</td></tr> </table>									Time(t), min	0	5	10	15	20	25	30	35	Concentration (C) , g/L	0	3	5	5	4	2	1	0
Time(t), min	0	5	10	15	20	25	30	35																				
Concentration (C) , g/L	0	3	5	5	4	2	1	0																				
		This vessel is to be used as a reactor for the decomposition of liquid reactant. The stoichiometry of decomposition is $A \rightarrow$ products. The decomposition is first order with $k = 0.307 \text{ min}^{-1}$. Estimate the fraction of reactant unconverted in the real reactor and compare this with fraction unconverted in a plug flow reactor of same size.																										
	b)	Explicate the significance of Tanks-in-series model. Derive design equation using Tanks-in-series model.						CO2	PO1	10																		
		OR																										
6	a)	Prove that the conversion is same for macrofluid and microfluid for a first order reaction in a plug flow and mixed flow reactors.						CO2	PO1	10																		
	b)	A first order liquid phase reaction is carried out in a tubular reactor. The results of a pulse tracer test on this reactor are tabulated below:						CO 3	PO 2	10																		

			<table border="1"> <thead> <tr> <th>Time (minutes)</th><th>Concentration ($\mu\text{mol}/\text{dm}^3$)</th></tr> </thead> <tbody> <tr><td>0</td><td>0</td></tr> <tr><td>1</td><td>1</td></tr> <tr><td>2</td><td>5</td></tr> <tr><td>3</td><td>8</td></tr> <tr><td>4</td><td>10</td></tr> <tr><td>5</td><td>8</td></tr> <tr><td>6</td><td>6</td></tr> <tr><td>7</td><td>4</td></tr> <tr><td>8</td><td>3</td></tr> <tr><td>9</td><td>2.2</td></tr> <tr><td>10</td><td>1.5</td></tr> <tr><td>12</td><td>0.6</td></tr> <tr><td>14</td><td>0</td></tr> </tbody> </table>	Time (minutes)	Concentration ($\mu\text{mol}/\text{dm}^3$)	0	0	1	1	2	5	3	8	4	10	5	8	6	6	7	4	8	3	9	2.2	10	1.5	12	0.6	14	0		
Time (minutes)	Concentration ($\mu\text{mol}/\text{dm}^3$)																																
0	0																																
1	1																																
2	5																																
3	8																																
4	10																																
5	8																																
6	6																																
7	4																																
8	3																																
9	2.2																																
10	1.5																																
12	0.6																																
14	0																																
			Evaluate and compare the conversion of this reaction using: (i) ideal plug flow reactor (ii) ideal mixed flow reactor and (iii) Tanks-in-series model. Take the reaction rate constant = 0.25 min^{-1}																														
			UNIT - IV																														
7	a)		Elaborate on the different stages in microbial growth phase with suitable kinetic equations and diagram. Distinguish between different types of microbial products.	CO2	PO1	10																											
	b)		<p>The specific growth rate for inhibited growth in a chemostat is given by the following equation: $\mu_g = \mu_m S / [K_s + S + I(K_s/K_I)]$ where, $S_0 = 10 \text{ g/L}$, $X_0 = 0$, $K_I = 0.01 \text{ g/L}$, $K_s = 1 \text{ g/L}$, $I = 0.05 \text{ g/L}$, $\mu_m = 0.5 \text{ h}^{-1}$, $Y^M_{X/S} = 0.1 \text{ g/g}$ and $k_d = 0$</p> <p>i) Find X and S as a function of D when $I = 0$ ii) With Inhibitor added to a chemostat, determine the effluent substrate concentration and X as a function of D. iii) Determine the cell productivity as a function of dilution rate.</p>	CO3	PO2	10																											
			OR																														
8	a)		<p>The following data are obtained in oxidation of pesticides present in wastewater by a mixed culture of microorganisms in a continuously operating aeration tank.</p> <table border="1"> <thead> <tr> <th>D (h^{-1})</th> <th>S (pesticides), mg/L</th> <th>X(cell concentration) mg/L</th> </tr> </thead> <tbody> <tr><td>0.05</td><td>15</td><td>162</td></tr> <tr><td>0.11</td><td>25</td><td>210</td></tr> <tr><td>0.24</td><td>50</td><td>250</td></tr> <tr><td>0.39</td><td>100</td><td>235</td></tr> <tr><td>0.52</td><td>140</td><td>220</td></tr> <tr><td>0.7</td><td>180</td><td>205</td></tr> <tr><td>0.82</td><td>240</td><td>170</td></tr> </tbody> </table> <p>Assuming the pesticide concentration in the feed waste water stream as $S_0 = 500 \text{ mg/l}$, determine $Y^M_{X/S}$, k_d, μ_m and K_s.</p>	D (h^{-1})	S (pesticides), mg/L	X(cell concentration) mg/L	0.05	15	162	0.11	25	210	0.24	50	250	0.39	100	235	0.52	140	220	0.7	180	205	0.82	240	170	CO3	PO2	10			
D (h^{-1})	S (pesticides), mg/L	X(cell concentration) mg/L																															
0.05	15	162																															
0.11	25	210																															
0.24	50	250																															
0.39	100	235																															
0.52	140	220																															
0.7	180	205																															
0.82	240	170																															

		b)	Compare and contrast the different types of unstructured non-segregated microbial growth models with the help of kinetic equations.	CO2	PO1	05
		c)	Derive equation for substrate in terms of dilution rate in absence of endogenous metabolism and steady state conditions.	CO2	PO1	05
			UNIT - V			
	9	a)	Consider the scale-up of a fermentation from 10 liters to 10,000 liters vessel. The small fermenter has a height-to-diameter ratio of 3. The impeller diameter is 30% of the tank diameter. Agitator speed is 500rpm and three Rushton impellers are used. Determine the dimensions of the large fermenter and agitator speed for: (i) Constant P/V (ii) Constant impeller tip speed (iii) Constant Reynolds number Assume geometric similarity.	CO 3	PO 2	8
		b)	Describe the construction and working of air-lift reactors with suitable diagram.	CO2	PO1	7
		c)	Mention any five criteria for selection of bioreactors with respect to physico-chemical properties.	CO 1		5
			OR			
	10	a)	Explain the scale-up criteria for stirred tank bioreactors.	CO2	PO1	6
		b)	Describe the construction and working of fluidized bed reactors with suitable diagram.	CO2	PO1	7
		c)	After a batch fermentation, the system is dismantled and approximately 75% of the cell mass is suspended in the liquid phase with volume 2 liters, while 25% is attached to the reactor walls and internals in a thick film. Work with radioactive tracers shows that 50% of the target intracellular product is associated with each cell fraction. The productivity of this reactor is 2 g/l at the 2 liters scale. Estimate the productivity at 20000 liters scale if both reactors had a height to diameter ratio of 2 to 1?	CO 3	PO 2	7
