

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

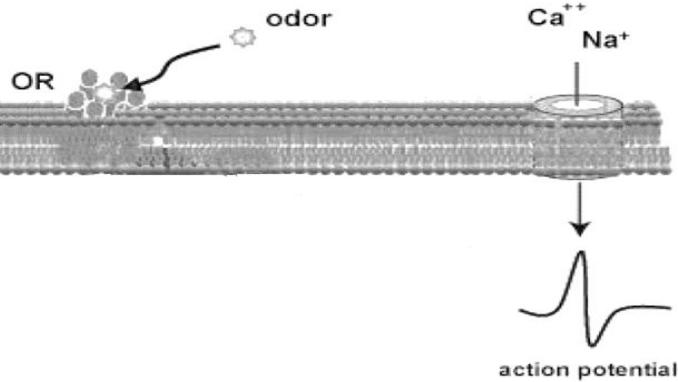
January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: BIOTECHNOLOGY

Duration: 3 hrs.


Course Code: 23BT5PESTN / 22BT5PESTN

Max Marks: 100

Course: Signal Transduction

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	<p>a) Discuss the polarization state of Photoreceptors in response to when moving from light to dark or vice versa in the below given image.</p> <div style="display: flex; justify-content: space-around; align-items: flex-end;"> <div style="text-align: center;"> <p>A</p> <p>Dark Light</p> <p>Membrane Potential (mV)</p> <p>Time (msec)</p> </div> <div style="text-align: center;"> <p>B</p> <p>Light Dark</p> <p>Membrane Potential (mV)</p> <p>Time (msec)</p> </div> </div>	<i>CO1</i>	<i>PO 1</i>	8
	2	<p>b) Tropicamide is an alkaloid atropine-derived anticholinergic drug and a non-selective antagonist of muscarinic acetylcholine (mACh) receptors. Apart from routine eye testing, it is given as topical application during cataract surgery for pupil dilation. Discuss the possible signalling mechanism involved in the process?</p>	<i>CO1</i>	<i>PO 1</i>	7
		<p>c) The concentrations of salts of K^+ and Na^+ in saline used for frog and mammalian experiments outside and inside the cell are 5mM and 140mM for K^+ and 140 and 14 for Na^+. Calculate the equilibrium potential and interpret the results.</p>	<i>CO1</i>	<i>PO1</i>	5
OR					
B	2	<p>a) Mention with one line reason, to which type of action the following falls (Reflex/Non reflex):</p> <ol style="list-style-type: none"> 1. Digestion of food 2. Sudden exposure to bright light 3. Knee jerk due to hit on patella 4. Yawning when we see someone else yawning 	<i>CO1</i>	<i>PO1</i>	8

	b)	<p>Odour sensing is located in the different parts of the brain and based on the types, signalling responses are sent for identification. Justify the statement using the below image as reference.</p>	CO1	PO1	7
	c)	<p>The squid axon placed in seawater has concentrations of ions such as K⁺ and Ca⁺⁺ in seawater outside and inside the cell, wherein 20mM and 400mM is for K⁺ and 440mM and 50mM for Ca⁺⁺. What is the equilibrium potential? How does it effects the movement of ions in and out of axon?</p>	CO1	PO1	5
UNIT - II					
3	a)	<p>Ryanodine receptors (RyRs) are located in the sarcoplasmic reticulum membrane and are responsible for the release of Ca²⁺ from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. Discuss the signaling mechanism involved.</p>	CO2	PO 2	8
	b)	<p>Identify the receptor/ receptors class for the following ligands in signaling mechanism:</p> <ol style="list-style-type: none"> 1. Insulin 2. Epinephrine 3. Estrogen 4. Growth factors 	CO2	PO 2	12
OR					
4	a)	<p>IGF binds and interacts through IGFR /IRS and switches on several downstream pathways. Discuss the pathway and the various types of responses through the signaling</p>	CO2	PO 2	8
	b)	<p>Deliberate on a signaling pathway involving the following types of ligands/Signals/ Second messengers/Intermediate of the pathway.</p> <ol style="list-style-type: none"> 1. Ca 2. NO 3. Ethylene 4. DAG 	CO2	PO 2	12

UNIT - III						
5	a)	Signalling by cytokine receptors depends upon their association with the <i>Janus</i> kinases which couple ligand binding to tyrosine phosphorylation of signalling proteins recruited to cytokine receptor complex such as STAT. Design the pathway and elaborate on the statement. Discuss the class of cytokine receptor which signals through JAK-STAT.	CO3	PO 3,5,1 2	8	
	b)	With a suitable figure, explain the nuclear receptor and their responses for which ligands are not yet discovered.	CO2	PO 2	5	
	c)	The crosstalk between different signaling pathways intricately exist in a complex cell. With at least 2 different downstream signaling pathways design a network that can lead to activation of targeted genes.	CO3	PO 3,5,1 2	7	
OR						
6	a)	Discuss type I category of Nuclear receptor and their signaling mechanism.	CO2	PO 2	5	
	b)	A signaling pathway can converge to and diverge from a common pathway. With a suitable example design pathway in each and show how the different downstream signaling leads to activation of genes.	CO3	PO 3,5,1 2	8	
	c)	Categorize different types of cytokine receptor and discuss their role in cells signaling.	CO2	PO 2	7	
UNIT - IV						
7	a)	How does G2/M transition checkpoints prevent the damaged DNA from entering into newly formed daughter cells? Design the network that involves switching ON/OFF of target genes with respect to DNA damage.	CO 3	PO 3,5,1 2	12	
	b)	Proteolysis regulates the components of cell cycle at regular interval. Justify the statement with example.	CO2	PO 2	8	
OR						
8	a)	Discuss and design signaling pathways that describes the transition checkpoint G1/S in a mammalian cell overexposed to UV light.	CO3	PO 3,5,1 2	12	
	b)	Deliberate on the role of Cip/Kip and INK in the regulation of cell cycle.	CO2	PO 2	8	
UNIT - V						
9	a)	Tumor suppressor gene signaling regulates cell division and other cellular functions to prevent cancer. Once mutated, cells can grow out of control leading to cancer. Validate the statement with an example showing the signaling mechanism involved.	CO3	PO 3,5,1 2	10	

		b)	With suitable figures discuss the mechanism involved in signaling pathway inactive in postnatal tissues except adult central nervous system, skin and hair.	CO 2	PO 2	10
			OR			
10	a)		In canonical Wnt/β-catenin pathway, catenin binds to TCF to upregulate genes for cell differentiation. Discuss and add a note on its importance in colo -rectal cancer.	CO3	PO 3,5,1 2	10
	b)		NF-κB, an inducible transcription factor play crucial role in inflammation development and its progression. Discuss.	CO 2	PO 2	10

B.M.S.C.E. - ODD SEM 2024-25