

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Program: B.E.

Branch: Biotechnology

Course Code: 19BT6DE3PCA

Course: Process Control and Automation

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT – I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	(i) Find the inverse Laplace Transform of $\frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} - \frac{dx}{dt} - 2x = 4 + e^{2t}$ $x(0) = 1 \quad x'(0) = 0 \quad x''(0) = -1$ (ii) Estimate the final value of the function x(t) for which the Laplace transform is $x(s) = \frac{1}{s(s^3 + 3s^2 + 3s + 1)}$	CO2	PO1	10
		b)	Describe the characteristic features of Laplace Transform of any five input functions.	CO2	PO1	04
		c)	Draw a block diagram showing all components of a process control system in a stirred tank reactor, where temperature is the control variable. Explain the function of each of the components briefly.	CO1	PO	06
			UNIT – II			
2	a)	A mercury thermometer having a time constant of 0.1 min is placed in a temperature bath at 100°F and allowed to come to equilibrium with the bath. At time t = 0, the temperature of the bath begins to vary sinusoidally about its average temperature of 100°F with an amplitude of 2°F. If the frequency of oscillation is 10/π cycles/min, plot the input and ultimate response of the thermometer reading as a function of time. Calculate the phase lag.	CO2	PO1	10	
	b)	Discuss the significance of converting non-linear to linear systems taking liquid-level systems as an example. Also derive the transfer function for the linearization.	CO2	PO1	10	

UNIT-III																	
3	a)	Derive the transfer function for a damped vibrator with a neat illustration. State all assumptions.	CO2	PO1	10												
	b)	A step change of magnitude 100 is introduced into a system having the transfer function $Y(S)/X(S) = 100/(s^2 + 15s + 100)$. Determine (i) % overshoot (ii) Rise time (iii) Maximum value of $Y(t)$ (iv) Ultimate value of $Y(t)$ and (v) Period of Oscillation.	CO2	PO1	10												
UNIT -IV																	
4	a)	Derive overall transfer function for change in set point and develop reduced block diagram.	CO4	PO3 PO5	10												
	b)	Develop the transfer function Y/X for the following control system	CO4	PO3	10												
OR																	
5	a)	For the control system shown in figure, (i) Obtain the closed loop transfer function C/U (ii) Find the value of K_c for which the closed loop response has a $\zeta = 2.3$ (iii) Estimate the offset for a unit-step change in U , if $K_c = 4$.	CO2	PO1	10												
	b)	A pneumatic PI temperature controller has an output pressure of 10 psig when the set point and process temperature coincide. The set point is suddenly increased by 10°F (i.e., a step change in error is introduced), and the following data are obtained. Determine the actual gain (psig per degree Fahrenheit) and the integral time.	CO2	PO1	10												
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align: center;">Time, s</th><th style="text-align: center;">psig</th></tr> </thead> <tbody> <tr> <td style="text-align: center;">0-</td><td style="text-align: center;">10</td></tr> <tr> <td style="text-align: center;">0+</td><td style="text-align: center;">8</td></tr> <tr> <td style="text-align: center;">20</td><td style="text-align: center;">7</td></tr> <tr> <td style="text-align: center;">60</td><td style="text-align: center;">5</td></tr> <tr> <td style="text-align: center;">90</td><td style="text-align: center;">3.5</td></tr> </tbody> </table>	Time, s	psig	0-	10	0+	8	20	7	60	5	90	3.5			
Time, s	psig																
0-	10																
0+	8																
20	7																
60	5																
90	3.5																

UNIT – V					
6	a)	Explain in detail, Bode diagrams for first order systems. Draw neat schematic of Bode plots.	<i>CO1</i>	<i>PO</i>	10
	b)	Plot the root locus diagram for the transfer function, $G = 1/s(s+3)$.	<i>CO3</i>	<i>PO2</i>	10
OR					
7	a)	State the theorems of Routh array test. Given the characteristic equation $s^4 + 5s^3 + 2s + 10 = 0$, analyze the stability of the process system by the Routh criterion.	<i>CO3</i>	<i>PO2</i>	10
	b)	Plot the root locus diagram for the transfer function, $G = \frac{1}{s(s^2 + 5s + 6)}$	<i>CO3</i>	<i>PO2</i>	10

B.M.S.C.E. - EVEN SEM 2022-23