

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Program: B.E.

Branch: Biotechnology

Course Code: 19BT6DE3STN

Course: Signal Transduction

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Differentiate autocrine, endocrine and paracrine signaling with suitable examples.	<i>CO1</i>	<i>PO1</i>	04
	b)	Illustrate and explain the role of voltage-gated and ligand-gated ion channels in neural transmission.	<i>CO2</i>	<i>PO2</i>	10
	c)	Describe the series of events and molecular consequences of photon absorption by rhodopsin in the rod cells.	<i>CO1</i>	<i>PO1</i>	06
OR					
2	a)	Neurotransmitters are released at synapses when intracellular vesicles loaded with neurotransmitter fuse with the plasma membrane. Describe the transduction pathway with suitable example.	<i>CO2</i>	<i>PO2</i>	08
	b)	In the mucous layer over laying the olfactory neurons, the odorant molecule binds directly to an olfactory receptor or to a specific binding protein that carries the odorant to a receptor. Describe the molecular events that follow the interaction between odorant and receptor.	<i>CO2</i>	<i>PO2</i>	08
	c)	Define signal transduction. Explain the components of intracellular signal transduction.	<i>CO1</i>	<i>PO1</i>	04
UNIT – II					
3	a)	Describe the role of stimulatory G protein in transduction of the epinephrine signal.	<i>CO1</i>	<i>PO1</i>	07
	b)	Two intracellular second messengers are produced in the hormone-sensitive phosphatidyl inositol system, which contribute to the raising cytosolic calcium. Identify the second messengers and explain their formation.	<i>CO2</i>	<i>PO2</i>	08
	c)	Discuss RTKs class of receptor and their representative ligand with signalling mechanism.	<i>CO3</i> <i>PO3</i> <i>PO4</i> <i>PO12</i>		05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
4	a)	Name the major components of the MAPK signaling pathways and describe their general function in these pathways.	<i>CO3</i>	<i>PO3 PO4 PO12</i>	08
	b)	Describe the regulation of PKA by cAMP. What other regulatory mechanisms contribute to PKA control?	<i>CO3</i>	<i>PO3 PO4 PO12</i>	07
	c)	Explain the activation of guanylyl cyclase by nitric oxide.	<i>CO3</i>	<i>PO3 PO4 PO12</i>	05
UNIT-III					
5	a)	What are the structural features of HREs? Explain how ligand binding is coupled to transcription activation?	<i>CO2</i>	<i>PO2</i>	07
	b)	Describe the JAK-STAT transduction mechanism with an example.	<i>CO2</i>	<i>PO2</i>	07
	c)	Describe the domain structure of nuclear receptors and the function of the domains.	<i>CO3</i>	<i>PO3 PO4 PO12</i>	06
UNIT -IV					
6	a)	Describe the major structural characteristics of CDKs. What are the major regulatory phosphorylation sites, and which protein kinases are responsible for these phosphorylations?	<i>CO2</i>	<i>PO2</i>	08
	b)	Illustrate and explain the control points of the cell cycle. Explain the external factors controlling cell-cycle progression.	<i>CO2</i>	<i>PO2</i>	5
	c)	What are the major components of the DNA damage check points, and how do these proteins convey signals to the cell cycle?	<i>CO2</i>	<i>PO2</i>	07
UNIT – V					
7	a)	Describe the general characteristic of a tumor suppressor with suitable example and signalling pathway.	<i>CO2</i>	<i>PO2</i>	10
	b)	Discuss signalling mechanism that involves inflammation responses to bacterial LPS.	<i>CO2</i>	<i>PO2</i>	10
