

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Program: B.E.

Branch: Biotechnology

Course Code: 19BT6DE4BIM

Course: Biomaterials

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 19.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT – I	CO	PO	Marks
1	a)	What are biomaterials? Give examples and applications of biomaterials.	CO1	PO1, PO2	06
	b)	Biomaterials must combine chemical and mechanical features of the biological system in order to achieve the required functional results. Highlight the main properties which help to achieve this.	CO1	PO1, PO2	06
	c)	Depict some of the organic functional groups and the class of compounds needed for biomaterials.	CO1	PO1, PO2	04
	d)	Elaborate the relevance of protein adsorption on biomaterials and how it affects biomedical or physiological applications.	CO1	PO1, PO2	04
		UNIT – II			
2	a)	Indicate the following properties for metal implant materials and polymers: a) Types of bonds present b) Electrical conductivity c) Thermal conductivity d) Mechanical deformation e) Advantages and chemical stability	CO2	PO1, PO2	05
	b)	What are the applications of polymers, ceramics and composites as biomaterials for implantation?	CO2	PO1, PO2	08
	c)	What is the first reaction in the body when any foreign material is implanted? Elaborate on the host body response to biomaterials.	CO2	PO1, PO2	07
		UNIT – III			
3	a)	What are the different types of prosthetic valves? How is the optimal prosthetic valve selected in individual patient?	CO3	PO1, PO2, PO5	08
	b)	Illustrate the shapes of any two limb prostheses. Mention their properties.	CO3	PO1, PO2, PO5	06
	c)	Present the regulatory aspects related to tissue engineering.	CO3	PO1, PO2, PO5	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT – IV					
4	a)	With a diagram, represent course of cellular differentiation into tissues and organs in humans. What are the stages of a tissue-biomaterial interaction?	CO3	PO1, PO2, PO5	05
	b)	Elaborate on connective tissues with examples. What are the different types of muscle tissue found in the human body?	CO3	PO1, PO2, PO5	07
	c)	Elucidate the formation of clot and various factors affecting blood compatibility.	CO3	PO1, PO2, PO5	08
		OR			
5	a)	Give a diagrammatic representation of blood flow in the heart along with all the different parts labelled.	CO3	PO1, PO2, PO5	05
	b)	What is ECM in connective tissue? What is ECM-driven communication?	CO3	PO1, PO2, PO5	07
	c)	What is the role of signalling factors in tissue engineering? Give an overview of the types of cell signalling pathways.	CO3	PO1, PO2, PO5	08
UNIT – V					
6	a)	Give examples of novel scaffolds in tissue engineering.	CO4	PO2	05
	b)	Collagen and laminin are very effective biological scaffolds. Justify emphasizing on the properties.	CO4	PO2	07
	c)	Why carbohydrates are well suited as biomaterials? List the biomedical applications of dextran and cellulose.	CO4	PO2	08
		OR			
7	a)	What are scaffolds? Highlight the methods which are used for the synthesis of scaffolds.	CO4	PO2	08
	b)	What are the different ways by which porosity and other characteristics can be controlled and measured in scaffolds?	CO4	PO2	06
	c)	Elaborate on 3D printing which has revolutionized tissue engineering. Elucidate on stereolithography as an example.	CO4	PO2	06
