

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 19BT6DCBIN

Max Marks: 100

Course: Bioinformatics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a)	With a suitable illustration, discuss the features of Genbank flatfile format.	07
	b)	Give an account on tools and resources available at NCBI.	06
	c)	Explicate the features of protein structure databases.	07

UNIT - II

2	a)	Perform the global alignment using Needlman wunch algorithm and determine the optimal alignment for the following sequences (Scores: Gap: and mismatch=-1 and for match=2)	10
		Seq A:CGAATCCGTCAA	
		Seq B: GATATCCTCATT	
	b)	Dot-plots provide a visual representation of sequence similarity. Substantiate the statement with an example.	10

OR

3	a)	The replacement of a single amino acid in the primary structure of a protein with another single amino acid, which is accepted by the processes of natural selection. Substantiate the statement and construct the matrix.	10
	b)	Perform the local alignment using Smith an Waterman algorithm and determine the optimal alignment for the following sequences (scores: Gap: -4, mismatch: -2 and for match: 4)	10
		Seq A: AGATGCTGA	
		Seq B: GAATGGCTA	

UNIT - III

4	a)	Construct a phylogenetic tree for the following distances between four taxa and determine the branch lengths using UPGMA method.	05
---	----	--	-----------

	A	B	C	D
A	-	0.15	0.45	0.60
B	-	-	0.55	0.65
C	-	-	-	0.63
D	-	-	-	-

b)	Discuss the architecture of a hidden Markov model representing a multiple sequence alignment.	05
----	---	-----------

c) Construct a phylogenetic tree for the following distances between five taxa and determine the branch lengths using Neighbourhood joining method. **10**

	A	B	C	D	E
A	-	22	39	39	41
B	-	-	41	41	43
C	-	-	-	18	20
D	-	-	-	-	10
E	-	-	-	-	-

OR

5 a) Construct a Position specific scoring matrix for the following multiple alignment of nucleotide sequences. Determine the probability of a new sequence AACTCG fitting into the matrix. **10**

Position	1	2	3	4	5	6
Sequence 1	A	T	G	T	C	G
Sequence 2	A	A	G	A	C	T
Sequence 3		T	A	C	T	C
Sequence 4		C	G	G	A	G
Sequence 5		A	A	C	T	G

b) Discuss the principle and construction of phylogenetic tree by Maximum Parsimony method with a suitable example. **10**

UNIT - IV

6 a) A 13.4 kb circular plasmid is digested with three restriction enzymes *BamHI*, *HindIII* and *PstI* individually and in combination. The resulting fragment sizes are determined by means of electrophoresis. The results are as follows: **10**

Sl No	Restriction enzymes	Fragment sizes (kb)
1	<i>BamHI</i>	5.1, 4.5, 3.8
2	<i>HindIII</i>	8.1, 5.3
3	<i>PstI</i>	13.4
4	<i>BamHI and HindIII</i>	5.1, 3.3, 2.5, 2.0, 0.5
5	<i>BamHI and PstI</i>	5.1, 4.5, 2.5, 1.3
6	<i>HindIII and PstI</i>	8.1, 3.3, 2.0

Draw a restriction map based on these results

b) What is a primer? Discuss the factors to be considered for design of primers. Add a note on the computational tools for design of primers. **10**

UNIT - V

7 a) Explicate the structure activity relationship (SAR) and QSAR with reference to drug discovery. **05**
 b) Discuss the molecular dynamics simulation model with a neat flowchart. **07**
 c) With a flowchart, Discuss the steps involved in drug discovery. **08**
