

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 23BT6PCETK/ 22BT6PCETK/ 19BT6DCETK

Max Marks: 100

Course: Enzyme Technology and Kinetics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>A new enzyme was isolated from a thermophilic bacterium found in deep-sea vents. Initial analysis showed that it catalyzes the removal of hydrogen from ethanol and transfers it to NAD⁺, forming acetaldehyde and NADH. The research team is preparing to submit this enzyme for classification under the Enzyme Commission (EC) system.</p> <p>Based on the function, classify this enzyme according to the EC nomenclature system. Justify each digit of its EC number and provide its full class name.</p>	CO 1	PO1, PO2	04
	b)	<p>A team uses ammonium sulfate precipitation to concentrate a fungal enzyme and then performs gel filtration chromatography for further purification. After these steps, SDS-PAGE shows a single band.</p> <p>Name the purification stages applied and explain their working principle. What does the SDS-PAGE result imply?</p>	CO 1	PO1, PO2	08
	c)	<p>During the preparation of an enzyme, the activity is first measured from the initial tissue homogenate. The result is that 0.25 mL of the homogenate transforms 0.20 μmol of substrate in 4 minutes. The total volume of the homogenate is 150 mL, and its protein concentration is 5 mg/mL.</p> <p>After several steps of purification, the final volume of the homogenous enzyme solution is 1.0 mL, and its protein concentration is 3 mg/mL. A sample of 5 μL of the purified enzyme transforms 0.25 μmol of substrate in 5 minutes.</p> <p>Calculate the following:</p> <ol style="list-style-type: none"> Specific activity of crude and purified enzyme Degree of purification Yield of enzyme activity (as a percentage) 	CO 1	PO1, PO2	08
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	2	a)	<p>You are studying a thermophilic microorganism isolated from a hot spring. It produces a heat-stable enzyme (Enzyme Z) that degrades lignin into smaller aromatic compounds. You plan to purify and characterize this enzyme from the culture supernatant. Fortunately, a substrate analog bound to agarose beads is available and mimics lignin, allowing affinity purification.</p> <p>i) Suggest any one advanced purification technique that would be applicable for Enzyme Z, and explain its working principle.</p> <p>ii) After affinity purification, how will you confirm the presence and purity of Enzyme Z?</p> <p>iii) You want to determine the pI of Enzyme Z. Describe how you would do this and interpret the result.</p> <p>iv) Suppose SDS-PAGE shows a single 40 kDa band, but Western blot using an anti-ligninase antibody shows no signal. What are possible explanations?</p> <p>v) You perform activity assays after thermal treatment at various temperatures. Activity remains stable up to 90°C, then drops. How would you interpret and utilize this property?</p>	CO 2	PO1, PO2	10																				
		b)	Explain the different types of enzyme specificities with suitable examples for each. Why is specificity important in enzyme-catalyzed reactions?	CO 2	PO1, PO2	10																				
UNIT - II																										
3	a)		Differentiate between allosteric and feedback regulation in enzymes with examples.	CO 2	PO2	04																				
	b)		Differentiate between competitive, uncompetitive, and non-competitive inhibition.	CO 2	PO2	06																				
	c)		An experiment was conducted to study the kinetics of a newly discovered enzyme. The initial reaction velocities (v_0) were measured at various substrate concentrations [S] as shown below:	CO 2	PO2	10																				
			<table border="1"> <thead> <tr> <th>Substrate, mol/L</th> <th>Initial velocity, μmol/min</th> </tr> </thead> <tbody> <tr> <td>2×10^{-3}</td> <td>105</td> </tr> <tr> <td>1×10^{-3}</td> <td>98</td> </tr> <tr> <td>5×10^{-4}</td> <td>87</td> </tr> <tr> <td>2×10^{-4}</td> <td>65</td> </tr> <tr> <td>1×10^{-4}</td> <td>50</td> </tr> <tr> <td>5×10^{-5}</td> <td>34</td> </tr> <tr> <td>2×10^{-5}</td> <td>19</td> </tr> <tr> <td>1×10^{-5}</td> <td>11</td> </tr> <tr> <td>5×10^{-6}</td> <td>6.2</td> </tr> </tbody> </table> <p>(i) Draw a Lineweaver-Burke plot for this enzyme. (ii) Determine K_M and V_{max} for this enzyme.</p>	Substrate, mol/L	Initial velocity, μmol/min	2×10^{-3}	105	1×10^{-3}	98	5×10^{-4}	87	2×10^{-4}	65	1×10^{-4}	50	5×10^{-5}	34	2×10^{-5}	19	1×10^{-5}	11	5×10^{-6}	6.2			
Substrate, mol/L	Initial velocity, μmol/min																									
2×10^{-3}	105																									
1×10^{-3}	98																									
5×10^{-4}	87																									
2×10^{-4}	65																									
1×10^{-4}	50																									
5×10^{-5}	34																									
2×10^{-5}	19																									
1×10^{-5}	11																									
5×10^{-6}	6.2																									
			OR																							
4	a)		Derive the Michaelis-Menten equation for a simple single substrate enzyme-catalyzed reaction.	CO 2	PO2	10																				

	b)	<p>You perform initial velocity experiments at various substrate concentrations, both in the absence and presence of a competitive inhibitor and get the following results:</p> <table border="1"> <thead> <tr> <th>Substrate [S] (mM)</th><th>v (without inhibitor) $\mu\text{mol}/\text{min}$</th><th>v (with inhibitor) $\mu\text{mol}/\text{min}$</th></tr> </thead> <tbody> <tr> <td>0.05</td><td>33.3</td><td>14.3</td></tr> <tr> <td>0.10</td><td>50.0</td><td>25.0</td></tr> <tr> <td>0.20</td><td>66.7</td><td>40.0</td></tr> <tr> <td>0.40</td><td>80.0</td><td>57.1</td></tr> <tr> <td>0.60</td><td>85.7</td><td>66.7</td></tr> </tbody> </table> <p>(i) Plot the Lineweaver-Burk plot for both conditions. (ii) Identify the type of inhibition and explain its graphical characteristics. (iii) Determine V_{max} and apparent K_m from the plot.</p>	Substrate [S] (mM)	v (without inhibitor) $\mu\text{mol}/\text{min}$	v (with inhibitor) $\mu\text{mol}/\text{min}$	0.05	33.3	14.3	0.10	50.0	25.0	0.20	66.7	40.0	0.40	80.0	57.1	0.60	85.7	66.7	CO 2	PO2	10
Substrate [S] (mM)	v (without inhibitor) $\mu\text{mol}/\text{min}$	v (with inhibitor) $\mu\text{mol}/\text{min}$																					
0.05	33.3	14.3																					
0.10	50.0	25.0																					
0.20	66.7	40.0																					
0.40	80.0	57.1																					
0.60	85.7	66.7																					
		UNIT - III																					
5	a)	A pharmaceutical company is designing inhibitors that mimic the transition state of an enzyme-catalyzed reaction. Explain how the enzyme active site, activation energy, and binding energy contribute to the specificity and catalytic efficiency of enzymes. Why is targeting the transition state effective?	CO 3	PO1	08																		
	b)	Explain metal ion catalysis taking Carbonic anhydrase as an example. Describe how Zn^{2+} facilitates this reaction.	CO 3	PO1	08																		
	c)	Lysozyme cleaves glycosidic bonds by distorting the sugar ring into a half-chair conformation. Explain the role of substrate strain and entropy effects in this process.	CO 3	PO1	04																		
		OR																					
6	a)	Ribonuclease A catalyzes RNA hydrolysis using acid-base catalysis. Describe the mechanism and the role of specific residues in this process. Why is this mechanism pH-sensitive?	CO 3	PO1	10																		
	b)	During digestion, chymotrypsin catalyzes peptide bond hydrolysis through covalent catalysis. Explain how the catalytic triad contributes to its function.	CO 3	PO1	10																		
		UNIT - IV																					
7	a)	<p>You measure the kinetics of free and immobilized urease. Initial rates at different substrate concentrations are:</p> <table border="1"> <thead> <tr> <th>[S] (mM)</th> <th>v (Free, $\mu\text{mol}/\text{min}$)</th> <th>v (Immobilized, $\mu\text{mol}/\text{min}$)</th> </tr> </thead> <tbody> <tr> <td>5</td> <td>0.32</td> <td>0.18</td> </tr> <tr> <td>10</td> <td>0.50</td> <td>0.28</td> </tr> <tr> <td>20</td> <td>0.67</td> <td>0.35</td> </tr> <tr> <td>50</td> <td>0.83</td> <td>0.45</td> </tr> <tr> <td>100</td> <td>0.90</td> <td>0.48</td> </tr> </tbody> </table> <p>Determine which system shows diffusional limitation and estimate V_{max}.</p>	[S] (mM)	v (Free, $\mu\text{mol}/\text{min}$)	v (Immobilized, $\mu\text{mol}/\text{min}$)	5	0.32	0.18	10	0.50	0.28	20	0.67	0.35	50	0.83	0.45	100	0.90	0.48	CO 4	PO1, PO7	10
[S] (mM)	v (Free, $\mu\text{mol}/\text{min}$)	v (Immobilized, $\mu\text{mol}/\text{min}$)																					
5	0.32	0.18																					
10	0.50	0.28																					
20	0.67	0.35																					
50	0.83	0.45																					
100	0.90	0.48																					
	b)	<p>Compare and contrast the following methods for immobilization of enzymes with suitable diagram.</p> <p>(i) Covalent binding (ii) Entrapment</p>	CO 4	PO1, PO7	10																		
		OR																					

	8	a)	Illustrate the effect of solute diffusion on kinetics of immobilized enzyme.	CO 4	PO1, PO7	10														
		b)	<p>Glucose isomerase is a key enzyme used in the production of high-fructose corn syrup (HFCS) by converting glucose into fructose. Due to its economic importance and repeated use in continuous processing, glucose isomerase is commonly immobilized on solid carriers like DEAE-cellulose, silica gel, or polyacrylamide and packed into column reactors.</p> <p>The use of immobilized glucose isomerase has dramatically improved process efficiency, reduced enzyme cost per batch, and enabled continuous, automated operation with higher operational stability. The enzyme operates at 60°C and pH 7.5 and is reused for up to 1,000 hours in packed-bed reactors before activity drops significantly.</p> <table border="1"> <thead> <tr> <th>Run Time (hours)</th> <th>Fructose Yield (%)</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>52</td> </tr> <tr> <td>200</td> <td>51</td> </tr> <tr> <td>400</td> <td>49</td> </tr> <tr> <td>600</td> <td>46</td> </tr> <tr> <td>800</td> <td>42</td> </tr> <tr> <td>1000</td> <td>38</td> </tr> </tbody> </table> <p>(i) Explain why glucose isomerase is immobilized for HFCS production instead of using it in soluble form.</p> <p>(ii) What could be the reasons for the decline in fructose yield over time despite constant process conditions? Suggest two strategies to address this issue.</p> <p>(iii) In a glucose isomerase-based HFCS process, a technician accidentally changes the pH of the feed from 7.5 to 5.5. After several hours, fructose yield drops significantly. What is the likely cause of this yield reduction? How can pH fluctuations affect immobilized enzyme performance?</p>	Run Time (hours)	Fructose Yield (%)	0	52	200	51	400	49	600	46	800	42	1000	38	CO 4	PO1, PO7	10
Run Time (hours)	Fructose Yield (%)																			
0	52																			
200	51																			
400	49																			
600	46																			
800	42																			
1000	38																			
			UNIT - V																	
	9	a)	“The remarkable catalytic activity of enzymes in monophasic organic solution can be explained by the effect of specific properties”. Identify the parameters and discuss their effects on a biocatalytic reaction in a monophasic organic solvent system.	CO 5	PO1, PO3	10														
		b)	Give a schematic outline and explain the steps involved in the metagenome approach for isolation of novel biocatalysts.	CO 5	PO1, PO3	10														
			OR																	
	10	a)	Differentiate between extremophiles and extremozymes. List the molecular adaptations of these enzymes to high temperatures. Explain these adaptations with any two suitable examples.	CO 5	PO1, PO3	10														
		b)	List any five reactions that are catalyzed by Ribozymes. Describe the characteristic features of hammerhead Ribozymes.	CO 5	PO1, PO3	10														
