

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Biotechnology

Course Code 19BT6DCGAP

Course: Genomics and Proteomics

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 05.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Enumerate the principle and steps of pacific biosciences SMRT sequencing.	<i>CO1</i>	<i>PO1</i>	07
	b)	Present the steps of Automated Sanger sequencing. Write the method to interpret the sequencing results.	<i>CO1</i>	<i>PO1</i>	08
	c)	Elucidate the steps of pyrosequencing.	<i>CO1</i>	<i>PO1</i>	05
UNIT - II					
2	a)	Sequence-tagged site (STS) mapping is a technology used in physical mapping of the genome. Write the steps of the technique.	<i>CO2</i>	<i>PO1</i>	08
	b)	Write the principle of the optical mapping technique.	<i>CO2</i>	<i>PO1</i>	07
	c)	Write the steps of Fluorescent <i>in situ</i> hybridisation (FISH) mapping.	<i>CO2</i>	<i>PO1</i>	05
UNIT - III					
3	a)	What is AFLP? Elaborate the steps of the technique.	<i>CO3</i>	<i>PO5</i>	08
	b)	Enumerate the principle of DNA microarrays.	<i>CO3</i>	<i>PO5</i>	06
	c)	What is STR typing? Write its principle.	<i>CO3</i>	<i>PO5</i>	06
OR					
4	a)	Elucidate the principle and steps involved in RNA Seq. Add a note on FastQC.	<i>CO3</i>	<i>PO5</i>	08
	b)	Elaborate on the principle and steps of differential display PCR technique.	<i>CO3</i>	<i>PO5</i>	08
	c)	What are SNPs? Discuss the types.	<i>CO3</i>	<i>PO5</i>	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	Illustrate the method of the Isotope Coded Affinity Tagging (ICAT) used in quantitative proteomic analysis.	CO3	PO5	10
	b)	What is MALDI-TOF? Elucidate the phases of MALDI-TOF.	CO3	PO5	10
OR					
6	a)	What is Tandem Mass spectrometry? Explain Quadrupole Time-of-flight MS.	CO3	PO5	10
	b)	Elucidate the utility of mass spectrometry in the detection of phosphoproteome.	CO3	PO12	10
UNIT - V					
7	a)	What is the principle of Surface Plasmon Resonance spectroscopy? Depict the workflow and write the applications.	CO4	PO1	08
	b)	Present the instrumentation and working principle of Atomic Force microscopy.	CO4	PO1	08
	c)	What are analytical protein microarrays? Write their utility.	CO4	PO1	04
