

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S.College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 23BT6PCGAP / 22BT6PCGAP

Max Marks: 100

Course: Genomics & Proteomics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define the C-value and C-value paradox. Explain the significance of Cot curve.			<i>CO1</i>	<i>PO1</i>	10
		b)	Illustrate how the shotgun sequencing approach was utilized in sequencing large genomes like that of humans. Differentiate between shotgun & clone contig approaches.			<i>CO1</i>	<i>PO1</i>	10
	OR							
	2	a)	List the steps involved in next-generation sequencing (NGS) and differentiate between first, second, and third-generation sequencing methods.			<i>CO1</i>	<i>PO1</i>	10
		b)	Describe a scenario where Nanopore sequencing would be more advantageous than traditional NGS techniques. Write the principles and functions of Nanopore sequencing with neat figure.			<i>CO1</i>	<i>PO1</i>	10
	UNIT - II							
	3	a)	Explain the importance of sequence alignment tools in genome mapping and annotation.			<i>CO 2</i>	<i>PO2</i>	10
		b)	Apply double digestion and partial digestion techniques to construct a restriction map of a hypothetical plasmid.			<i>CO 2</i>	<i>PO2</i>	10
	OR							
	4	a)	Describe the principle and application of FISH and its amplified variants in genome mapping.			<i>CO 2</i>	<i>PO2</i>	7
		b)	Demonstrate how software tools assist in aligning sequences and visualizing mapped regions of a genome.			<i>CO 2</i>	<i>PO2</i>	7

	c)	Analyze the steps in generating a genome-wide map using a combination of restriction mapping and FISH.	CO 2	PO2	6
UNIT - III					
5	a)	Explain the role of microRNAs, shRNAs, and piRNAs in post-transcriptional gene regulation	CO2	PO1	10
	b)	Compare and contrast RFLP, RAPD, and AFLP in terms of reproducibility, sensitivity, and ease of use.	CO 2	PO2	10
OR					
6	a)	How SNPs are detected and their significance in disease association studies.	CO2	PO1	10
	b)	Develop the pipeline for an RNA-seq experiment to identify differentially expressed genes with neat illustrations.	CO2	PO2	10
UNIT - IV					
7	a)	How mass spectrometry helps in peptide mass fingerprinting and protein identification.	CO 3	PO5	8
	b)	Compare and contrast the advantages and limitations of gel-based versus gel-free proteomics approaches.	CO3	PO1	8
	c)	Critically evaluate the role of proteomics in biomarker discovery and disease diagnostics.	CO3	PO1	4
OR					
8	a)	Apply the principles of soft ionization MS to determine protein expression in a given sample.	CO3	PO1	10
	b)	Propose an integrated proteomics pipeline for studying drug response in cultured mammalian cells using radio isotope labelling.	CO3	PO2	10
UNIT - V					
9	a)	How yeast two-hybrid systems help identify protein–protein interactions.	CO4	PO2	10
	b)	Develop suitable label free method to determine protein –ligand interaction.	CO4	PO2	10
OR					
10	a)	How immunoprecipitation followed by mass spectrometry can be used for interaction studies.	CO4	PO2	10
	b)	Analyze the limitations of protein microarrays and distinguish various types of protein arrays.	CO4	PO2	10
