

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Branch: Biotechnology

Course Code: 19BT7DCEQD

Course: Bioprocess Equipment Design and CAED

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Date: 28.02.2023

Instructions: 1. Answer questions from all units.

2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Sketch the symbols for	10
	(i) Rotary pump	
	(ii) Evaporator	
	(iii) Spray column	
	(iv) Ball mill	
	(v) Spray drier	
	b) Discuss about the factors satisfying the performance and reliability of the process equipment.	10

UNIT - II

2	a) Draw a neat proportional sketch of diaphragm valve and list its parts.	10
	b) Draw a schematic diagram of a bioreactor and label its parts.	10

OR

3	a) Draw different types of welding joints.	08
	b) Draw a neat proportional sketch of gate valve and list its parts.	12

UNIT - III

4	A continuous packed bed distillation column is to be designed for separating 5,000 kg/h of a liquid mixture containing 30 mole % of methanol and 70 mole % of water into overhead product containing 95 mole % of methanol. The residue contains 5 mole % of methanol. A reflux ratio of 3.0 is used. Design the packed bed distillation column.	60
---	--	-----------

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Data:

T(°C)	100	93.5	89.3	84.4	78	73.1	69.3	66	64.5
x _A	0	0.04	0.08	0.15	0.3	0.5	0.7	0.9	1
y _A	0	0.23	0.365	0.517	0.665	0.779	0.87	0.958	1

Draw a neat sectional front view of the packed bed distillation column and label its parts.

OR

5 Design a fermenter with diameter 1.525 m and volume of 6.056 m^3 . A flat six blade disc turbines are provided for agitaion of diameter 0.71 m with four baffles. First blade is present at at height of 0.61 m and second one is at height of 1.83 m from bottom of the vessel or tank. Agitator speed is 92 rpm. Air is introduced below the lower impeller at a superficial velocity of 0.01067 m/s based on tank cross sectional area.

Data:

- Specific gravity of fluid= 1.038 kg/m^3
- Viscosity of fluid = 1.4 cP
- Jacket spacing = 100 mm
- Internal pressure= 2.5 kgf/cm^2
- Steam pressure= 1.5 kgf/cm^2
- Material of construction is stainless steel
- Allowable Stress= $55 \times 10^6 \text{ N/m}^2$
- Yield Stress= 1950 kgf/cm^2
- Standard motor efficiency = 70%

Draw a neat sectional front view of the fermenter and label its parts.
