

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

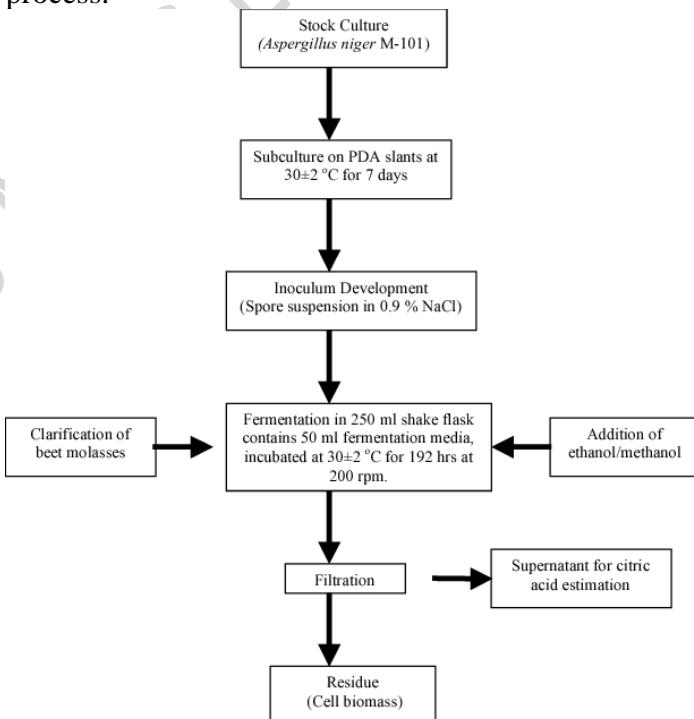
January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Biotechnology

Course Code: 19BT7DCEQD

Course: Bioprocess Equipment design and CAED


Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions:

1. Unit 1 is compulsory.
2. Unit 2 and Unit 3 are provided with internal choices.
3. Missing data if any may be suitably assumed.
4. Use of Perry's hand book/code book is permitted.

UNIT - I			CO	PO	Marks
1	a)	<p>Sketch the symbols for</p> <p>(i) Centrifugal pump (ii) Evaporator (iii) Heat exchanger (iv) Rotary Drum Filter (v) Plate and filter press (vi) Roller Crusher</p>	CO2	PO 1	12
	b)	Explain the various factors satisfying the performance and reliability of the process equipment.	CO1	PO1	08
OR					
2	a)	Analyse the process flow diagram, suggest the 5 major equipments required to the production of citric acid and explain the entire process.	CO2	PO2	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Differentiate between internal and external constraints of bioprocess.	CO1	PO1	08																								
		UNIT - II																											
3	a)	Draw a neat proportional sketch of gate valve and list its parts.	CO3	PO2	15																								
	b)	Draw a schematic diagram for normal flow and tangential flow filtration systems.	CO3	PO1	05																								
		OR																											
4	a)	Draw a neat sketch of gland and stuffing box expansion joint.	CO3	PO2	15																								
	b)	Draw a neat proportional sketch of corner joint and tee joint.	CO3	PO1	05																								
		UNIT - III																											
5	a)	<p>A 1-2 Shell & tube heat exchanger required to cool 18.528 kg/s of ethylene glycol from 120°C to 103°C using Toluene as the coolant. The Toluene is heated from 27°C to 63°C. Use steel tubes of 14 BWG thicknesses having an outer diameter of 19.05mm and inner diameter of 16.56 mm. The tubes have a length of 8 ft and are to be laid on a triangular pitch of 1 inch. The shell contains 25 % cut segmented baffles spaced 152 mm apart. Let the ethylene glycol flow in tubes because it is more corrosive liquid. Design the heat exchanger for $U_D = 343 \text{ W/m}^2 \text{ }^\circ\text{C}$ and $R_D = 0.0003 \text{ (W/m}^2 \text{ }^\circ\text{C})^{-1}$. Heat exchanger is operated at 1 atm. Material of construction is carbon steel with allowable stress 12 kgf/cm².</p> <p>a) Design the shell and tube heat exchanger b) Draw a neat sectional front view of the heat exchanger and label its parts.</p> <p>Data:</p> <table border="1"> <thead> <tr> <th>Components</th> <th>NBP</th> <th>Density</th> <th>Viscosity</th> <th>Specific Heat (Cp)</th> <th>Thermal Conductivity (k)</th> </tr> </thead> <tbody> <tr> <td>Units</td> <td>°C</td> <td>kg/m³</td> <td>kg/m sec</td> <td>kJ/kgK</td> <td>W/mK</td> </tr> <tr> <td>Toluene</td> <td>110.8</td> <td>867</td> <td>5.90 x 10⁻⁴</td> <td>1.675</td> <td>0.134</td> </tr> <tr> <td>Ethylene Glycol</td> <td>197.3</td> <td>1070</td> <td>3.00 x 10⁻³</td> <td>2.685</td> <td>0.259</td> </tr> </tbody> </table>	Components	NBP	Density	Viscosity	Specific Heat (Cp)	Thermal Conductivity (k)	Units	°C	kg/m ³	kg/m sec	kJ/kgK	W/mK	Toluene	110.8	867	5.90 x 10 ⁻⁴	1.675	0.134	Ethylene Glycol	197.3	1070	3.00 x 10 ⁻³	2.685	0.259	CO4	PO2, 3	40+20
Components	NBP	Density	Viscosity	Specific Heat (Cp)	Thermal Conductivity (k)																								
Units	°C	kg/m ³	kg/m sec	kJ/kgK	W/mK																								
Toluene	110.8	867	5.90 x 10 ⁻⁴	1.675	0.134																								
Ethylene Glycol	197.3	1070	3.00 x 10 ⁻³	2.685	0.259																								
		OR																											
6	a)	A continuous fractionating packed bed column is to be designed for separating 5,000 kg/h of a liquid mixture containing 30 mole % of acetone and 70 mole % of water into overhead product containing 90 mole % of acetone. The residue containing 5 mole % of acetone. A reflux ratio of 1.0 is used. The distillation column is operated at 1 atmosphere pressure and at 70% flooding velocity. Relative volatility of feed mixture is 1.5. Consider allowable stress of material 12 kgf/cm ² . Density of acetone 792 kg/m ³ . Mass transfer coefficient is 0.035 kmol/m ³ s. Design the packed bed distillation column.	CO4	PO2, 3	40+20																								

(i) Calculate the overall material balance & estimate total number of plates in the column
 (ii) Estimate the height & diameter of fractionating column
 (iii) Draw the sectional front view details of the fractionating column

Data: Acetone Water

Temperature (°C)	x	y
74.80	0.05	0.6381
68.53	0.10	0.7301
65.26	0.15	0.7716
63.59	0.20	0.7916
61.87	0.30	0.8124
60.75	0.40	0.8269
59.95	0.50	0.8387
59.12	0.60	0.8532
58.29	0.70	0.8712
57.49	0.80	0.8950
56.68	0.90	0.9335
56.30	0.95	0.9627
