

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S.College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Biotechnology

Duration: 3 hrs.

Course Code: 22BT7PEGIN

Max Marks: 100

Course: Genome Informatics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	How does the chemical process in pyrosequencing contribute to nucleotide detection?	CO1	PO 1	7
		b)	What factors might contribute to the differences in read accuracy between Illumina and Ion Torrent sequencing?	CO1	PO 1	7
		c)	How would you assess the trade-offs between sequencing cost, speed, and accuracy across different NGS technologies?	CO1	PO 1	6
OR						
	2	a)	If a sequencing lab is constrained by budget but requires high accuracy, which sequencing method would be most suitable? Justify your choice.	CO1	PO5	6
		b)	Why do short-read sequencing technologies face challenges in genome assembly?	CO1	PO5	6
		c)	Design a flowchart comparing the workflow of three NGS techniques based on their core principles.	CO1	PO5	8
UNIT - II						
	3	a)	How would you adjust the assembly pipeline if your dataset contains a high number of sequencing errors?	CO1	PO5	7
		b)	What would be the consequences of ignoring sequence read correction methods in genome assembly?	CO1	PO5	6
		c)	What role do genome browsers play in analyzing large-scale sequencing data?	CO1	PO5	7
OR						
	4	a)	Why is De Novo Genome Assembly considered more challenging than reference-based assembly?	CO1	PO5	7
		b)	What are the advantages and limitations of various NGS data preprocessing methods?	CO1	PO5	7
		c)	Propose a strategy to improve genome assembly quality using current sequencing technologies.	CO1	PO5	6

UNIT - III					
5	a)	Why is genome assembly often compared to solving a complex puzzle?	CO2	PO2	6
	b)	How would you decide whether to use the Overlap Graph Approach or the De Bruijn Graph Approach for a given dataset?	CO2	PO2	6
	c)	If you were to design a new genome assembly algorithm, what key features would you include?	CO2	PO2	8
OR					
6	a)	What are the strengths and weaknesses of Greedy Algorithms in genome assembly?	CO2	PO2	7
	b)	What preprocessing steps would you recommend before applying the Overlap Layout Consensus (OLC) method?	CO2	PO2	7
	c)	Given an NGS dataset, what criteria would you use to determine the most suitable assembly algorithm?	CO2	PO2	6
UNIT - IV					
7	a)	How does RNA-seq contribute to biomarker discovery in cancer research?	CO3	PO2	7
	b)	If given an RNA-seq dataset from prostate cancer patients, how would you identify key differentially expressed genes?	CO3	PO2	7
	c)	Propose a study using NGS to investigate microRNAs in a specific type of cancer.	CO3	PO2	6
OR					
8	a)	How effective is targeted sequencing compared to whole-genome sequencing in identifying cancer mutations?	CO3	PO2	7
	b)	What are the implications of high-throughput RNA interference screens for personalized cancer therapy?	CO3	PO2	8
	c)	How does the integration of NGS with clinical oncology impact early cancer diagnosis and treatment?	CO3	PO2	5
UNIT - V					
9	a)	How does NGS facilitate the identification of polymorphisms in neuropsychiatric disorders?	CO4	PO1	5
	b)	What are the major challenges in using NGS for early disease diagnosis?	CO4	PO1	6
	c)	Develop a workflow for using NGS in personalized medicine for neuroinflammatory diseases.	CO4	PO1	9
OR					
10	a)	How would you use NGS to detect genetic variations linked to Alzheimer's disease?	CO4	PO1	5
	b)	How do different sequencing strategies compare in their ability to detect genetic markers for Parkinson's disease?	CO4	PO1	6
	c)	How can NGS contribute to precision medicine approaches in neurodegenerative disorders?	CO4	PO1	9
