

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19CH3DCFME

Max Marks: 100

Course: Fluid Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Prove that internal pressure at any point in a fluid at rest is same in all directions.	<i>CO 1</i>	<i>PO 2</i>	06			
	b)	The pressure difference over a U-tube manometer is 2800 N/m^2 . If the manometric fluid is having a specific gravity of 1.8 and water is flowing through the pipeline. Compute the manometer reading.	<i>CO 1</i>	<i>PO 2</i>	04			
	c)	Deduce barometric equation for isothermal condition using the principles of hydrostatic equilibrium.	<i>CO 1</i>	<i>PO 2</i>	10			
OR								
2	a)	Analyze the variation of viscosity of gases and liquids with temperature with suitable examples.	<i>CO 1</i>	<i>PO 2</i>	10			
	b)	Explain the formation of a Boundary layer with a neat sketch.	<i>CO 1</i>	<i>PO 1</i>	10			
			UNIT - II					
3	a)	Derive continuity equation for frictionless fluid.	<i>CO 3</i>	<i>PO 2</i>	04			
	b)	A 25cm diameter pipe carries oil of specific gravity 0.9 at a velocity of 3m/s. At another section the diameter is 20cm. find the velocity at this section and also the mass flow rate of oil.	<i>CO 3</i>	<i>PO 2</i>	06			
	c)	Derive Bernoulli's Equation for frictionless fluid.	<i>CO 3</i>	<i>PO 2</i>	10			
OR								
4	a)	A non-uniform part of pipeline 5m long is laid at the slope of 2in5. The pressure gauges each fitted at the upper and lower ends read 20N/cm^2 and 12.5N/cm^2 respectively. If the diameters at the upper and lower ends are 15cm and 10cm respectively, determine the quantity of water flowing per second.	<i>CO 3</i>	<i>PO 2</i>	10			
	b)	Analyze the construction and working principal of a Rotameter	<i>CO 3</i>	<i>PO 2</i>	10			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Derive momentum Equation for compressible flow.	CO2	PO 2	10
	b)	Explain the velocity of sound wave in a fluid with suitable illustration.	CO 2	PO 1	10
OR					
6	a)	Define Mach number. Compare Sonic, Subsonic and Super Sonic flow.	CO 2	PO 2	10
	b)	Derive an expression for stagnation pressure under adiabatic conditions for a compressible fluid.	CO 2	PO 2	10
UNIT - IV					
7	a)	Explain the construction and working principle of a Centrifugal pump.	CO 4	PO 1	12
	b)	Outline the classification of pumps with suitable examples.	CO 4	PO 2	08
OR					
8	a)	Write a note of priming, cavitation and NPSH of a pump.	CO4	PO 1	08
	b)	Analyze the characteristic curves of a centrifugal pump.	CO 4	PO 2	12
UNIT - V					
9	a)	Illustrate dimensional homogeneity by considering any flow phenomena equation.	CO 3	PO 2	08
	b)	Explain the different methods of dimensional analysis.	CO 3	PO 1	12
OR					
10	a)	Discuss the significance of dimensionless numbers used in fluid flow phenomena.	CO 3	PO 2	08
	b)	The pressure difference ΔP in a pipe of diameter D and length L due to viscous flow depends on the velocity V , viscosity μ and density ρ . Deduce a relation for pressure drop using Buckingham Π -theorem of dimensional analysis	CO 3	PO 2	12
