

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH3PCFME / 22CH3PCFME

Max Marks: 100

Course: Fluid Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Mark s
			1	a)	State Pascal Law and prove that $P_x = P_y = P_z$.			
			b) Derive the expression for pressure difference measured by a differential U- tube manometer attached to pipe across two sections i) at different elevation ii) at same elevation			CO1	PO1	10
			OR					
			2	a)	State Newton's law of viscosity and define different types of fluids based on Newton's law.	CO1	PO1	08
				b)	Define Reynold's number. Discuss its significance in fluid flow.	CO1	PO1	05
				c)	Explain the concept of boundary layer separation and wake formation.	CO1	PO1	07
			UNIT - II					
			3	a)	Derive Bernoulli's equation stating all assumptions. What are the corrections applied to the equation and why?	CO2	PO3	14
				b)	Calculate the pressure drop due to friction in a 300 m long pipe 150mm i.d. through which water is flowing at a rate of 0.05 m ³ /s. Data: Density of water =1000 kg/m ³ , Viscosity of water = 10×10^{-3} (N.s)/m ²	CO3	PO3	06
			OR					
			4	a)	Prove that the average velocity is one half the maximum velocity for an incompressible fluid flowing in a pipe.	CO2	PO3	10
				b)	A 15 kW pump with 80% efficiency is discharging oil of specific gravity 0.85 to an overhead tank from storage tank. The surface of the oil in the storage tank from a datum line is 5m and that in	CO3	PO3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		the overhead tank from the datum line is 25m. Both the tanks are open to atmosphere. If the losses in the piping system are 1.75 m of flowing fluid, Calculate the volumetric flowrate of oil.			
		UNIT - III			
5	a)	What is a compressible fluid? Discuss the continuity equation for compressible fluid.	CO3	PO3	08
	b)	A gas is flowing through a horizontal pipe at a temperature of 4°C . The diameter of the pipe is 8cm at section 1 of the pipe and pressure is 30.3N/cm^2 (gauge). The diameter of the pipe changes to 4cm at section 2 where pressure is 20.3N/cm^2 (gauge). Find the velocities of the gas at these sections assuming an isothermal process. Take atmospheric pressure= 10N/cm^2 and $R= 287.14\text{ N-m/kg-K}$.	CO3	PO3	12
		OR			
6	a)	Calculate the stagnation pressure, temperature and density on the nose of a plane which is flying at 800km/hour through still air having a pressure 8N/cm^2 (absolute) and temperature -10°C . Take $R=287\text{ J/kg-K}$ and $\gamma = 1.4$. Assume adiabatic condition.	CO3	PO3	10
	b)	Derive an expression for mass flowrate of compressible fluid flowing through a venturimeter under adiabatic condition.	CO3	PO3	10
		UNIT - IV			
7	a)	What is a pump? Give the classification of pump. Explain the construction and working of centrifugal pump.	CO2	PO3	14
	b)	Discuss the following i) Cavitation ii) NPSH	CO1	PO1	06
		OR			
8	a)	Calculate the discharge of water flowing through a pipe 30cm diameter placed in an inclined position where a venturi meter is inserted having a throat diameter 15cm. The difference of pressure as measured by an inverted U-tube manometer is 30cm. The manometer fluid has a density of 0.6. The loss of head between pipe and throat is 0.2 times the kinetic head in the pipe.	CO3	PO3	10
	b)	Explain the characteristics of centrifugal pump.	CO3	PO3	10
		UNIT - V			
9	a)	Using Buckingham π -method of dimensional analysis establish a correlation between the thrust developed by the propeller P which depends on the angular velocity ω , speed of advance V , diameter D , dynamic viscosity μ , mass density ρ , elasticity of fluid medium which can be denoted by the speed of sound in the medium C	CO3	PO3	12
	b)	Explain the significance of different dimensionless numbers.	CO3	PO3	08
		OR			

	10	a)	For an agitation process, the power requirement of agitator is P , which is dependent on propeller diameter D , rotational speed N , density (ρ), viscosity (μ) and acceleration due to gravity. Using dimensionless analysis find the correct representation for the power requirement in terms of dimensionless groups.	CO3	PO3	10
		b)	Explain the following i) Derived quantities ii) Buckingham's Pi theorem	CO3	PO3	10

REAPPEAR EXAMS 2024-25